

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure $\mu: \mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

Always: Crisp elements of \mathcal{T} , i.e., $\mathcal{T} \cap \{0,1\}^X$, determine a σ -algebra \mathcal{B}

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \}$$
.

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: The tribe of all constants from [0,1] (w.l.o.g., with a singleton domain) may be identified with numbers from [0,1]. It is called a **full tribe of constants**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X, $\mathcal{T} = \{A \in [0,1]^X \mid A \text{ is } \mathcal{B}\text{-measurable}\}$ Then (\mathcal{T},T) is a T-tribe for any measurable t-norm T. It is called a full tribe.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \}$$
.

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

Always: Crisp elements of \mathcal{T} , i.e., $\mathcal{T} \cap \{0,1\}^X$, determine a σ -algebra \mathcal{B}

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \}$$
.

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: The tribe of all constants from [0,1] (w.l.o.g., with a singleton domain) may be identified with numbers from [0,1]. It is called a **full tribe of constants**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X, $\mathcal{T} = \{A \in [0,1]^X \mid A \text{ is } \mathcal{B}\text{-measurable}\}$ Then (\mathcal{T},T) is a T-tribe for any measurable t-norm T. It is called a full tribe.

$$T_{\mathbf{L}}(x,y) = \max(x+y-1,0)$$

These tribes correspond to set-representable σ -complete MV-algebras

$$T_{\mathbf{L}}(x,y) = \max(x+y-1,0)$$

These tribes correspond to set-representable σ -complete MV-algebras

Theorem: [Butnariu, Klement] All elements of T are B-measurable. Each measure is **regular** and it is of the form

$$\mu(A) = \int A \, d\nu$$

where $\nu = \mu \upharpoonright \mathcal{B}$ is a (classical) measure on \mathcal{B} .

$$T_{\mathbf{L}}(x,y) = \max(x+y-1,0)$$

These tribes correspond to set-representable σ -complete MV-algebras

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: The tribe of all constants from [0,1] (w.l.o.g., with a singleton domain) may be identified with numbers from [0,1]. It is called a **full tribe of constants**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X, $\mathcal{T} = \{A \in [0,1]^X \mid A \text{ is } \mathcal{B}\text{-measurable}\}$ Then (\mathcal{T},T) is a T-tribe for any measurable t-norm T. It is called a full tribe.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \}$$
.

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

Always: Crisp elements of \mathcal{T} , i.e., $\mathcal{T} \cap \{0,1\}^X$, determine a σ -algebra \mathcal{B}

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure $\mu: \mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure $\mu: \mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure $\mu: \mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

Always: Crisp elements of \mathcal{T} , i.e., $\mathcal{T} \cap \{0,1\}^X$, determine a σ -algebra \mathcal{B}

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \}$$
.

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: The tribe of all constants from [0,1] (w.l.o.g., with a singleton domain) may be identified with numbers from [0,1]. It is called a **full tribe of constants**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X, $\mathcal{T} = \{A \in [0,1]^X \mid A \text{ is } \mathcal{B}\text{-measurable}\}$ Then (\mathcal{T},T) is a T-tribe for any measurable t-norm T. It is called a full tribe.

$$T_{\mathbf{L}}(x,y) = \max(x+y-1,0)$$

These tribes correspond to set-representable σ -complete MV-algebras

$$T_{\mathbf{L}}(x,y) = \max(x+y-1,0)$$

These tribes correspond to set-representable σ -complete MV-algebras

Theorem: [Butnariu, Klement] All elements of T are B-measurable. Each measure is **regular** and it is of the form

$$\mu(A) = \int A \, d\nu$$

where $\nu = \mu \upharpoonright \mathcal{B}$ is a (classical) measure on \mathcal{B} .

$$T_{\mathbf{L}}(x,y) = \max(x+y-1,0)$$

These tribes correspond to set-representable σ -complete MV-algebras

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: The tribe of all constants from [0,1] (w.l.o.g., with a singleton domain) may be identified with numbers from [0,1]. It is called a **full tribe of constants**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X, $\mathcal{T} = \{A \in [0,1]^X \mid A \text{ is } \mathcal{B}\text{-measurable}\}$ Then (\mathcal{T},T) is a T-tribe for any measurable t-norm T. It is called a full tribe.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \}$$
.

Then (T,T) is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: Let \mathcal{B} be a σ -algebra of subsets of X,

 \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \} .$$

Basic notions of fuzzy measure theory

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

Always: Crisp elements of \mathcal{T} , i.e., $\mathcal{T} \cap \{0,1\}^X$, determine a σ -algebra \mathcal{B}

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$

classical measure theory	fuzzy measure theory
σ -algebra $\mathcal{T} \subseteq 2^X$	tribe (\mathcal{T},T) , where $\mathcal{T}\subseteq [0,1]^X$
$\emptyset \in \mathcal{T}$	$0 \in \mathcal{T}$
$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$	$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$
$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$	$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}^*$
$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$	$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{T}, A_n\nearrow A\Rightarrow A\in\mathcal{T}$
measure μ : $\mathcal{T} \to [0, \infty[$	regular measure μ : $\mathcal{T} \to [0, \infty[$
$\mu(\emptyset) = 0$	$\mu(0) = 0$
$\mu(A \cup B)$	$\mu(A \overset{\cdot}{\cup} B)$
$= \mu(A) + \mu(B) - \mu(A \cap B)$	$= \mu(A) + \mu(B) - \mu(A \cap B) *$
$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$
$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$	$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$

*
$$(A \cap B)(x) = T(A(x), B(x)), \qquad (A \cup B)(x) = S(A(x), B(x))$$