Deduction theorem in classical logic

 \mathcal{T} ... theory

A,B ... formulas

$$\mathcal{T} \cup \{A\} \vdash B \text{ iff } \mathcal{T} \vdash A \to B$$

Proof ←:

 $//\mathsf{BEGIN}$ of proof of $\mathcal{T} \vdash A \to B$

÷

 $D_{i-1} = A \to B$

 $//\mathsf{END}$ of proof of $\mathcal{T} \vdash A \to B$

 $SA: D_i = A$

 $MP(D_i, D_{i-1}): D_{i+1} = B$

⇒: Proof by contradiction:

Suppose that there is a formula B such that $\mathcal{T} \cup \{A\} \vdash B$, $\mathcal{T} \not\vdash A \to B$.

⇒: Proof by contradiction:

Suppose that there is a formula B such that $\mathcal{T} \cup \{A\} \vdash B$, $\mathcal{T} \not\vdash A \to B$.

1. B is neither an axiom, nor a special axiom $(\in \mathcal{T})$ because then $\mathcal{T} \vdash B$,

$$D_1 = B$$

 $RI(D_1): D_2 = A \rightarrow B$

hence $\mathcal{T} \vdash A \rightarrow B$.

⇒: Proof by contradiction:

Suppose that there is a formula B such that $\mathcal{T} \cup \{A\} \vdash B$, $\mathcal{T} \not\vdash A \to B$.

1. B is neither an axiom, nor a special axiom $(\in \mathcal{T})$ because then $\mathcal{T} \vdash B$,

$$D_1 = B$$

 $RI(D_1): D_2 = A \rightarrow B$

hence $\mathcal{T} \vdash A \rightarrow B$.

2. $B \neq A$ because $\mathcal{T} \vdash A \rightarrow A$.

3. B is obtained by deduction in the proof of $\mathcal{T} \cup \{A\} \vdash B$.

WLOG, we choose for B a formula with the shortest possible proof; its shortest proof must be of the following form:

$$\begin{array}{c} \vdots \\ D_i \\ \vdots \\ D_j = D_i \to B \\ \vdots \\ \mathsf{MP}(D_i, D_j): \quad D_m = B \end{array}$$

for i < j < m or j < i < m.

3. B is obtained by deduction in the proof of $\mathcal{T} \cup \{A\} \vdash B$.

WLOG, we choose for B a formula with the shortest possible proof; its shortest proof must be of the following form:

$$\begin{array}{c} \vdots \\ D_i \\ \vdots \\ D_j = D_i \to B \\ \vdots \\ \mathsf{MP}(D_i, D_j): \qquad D_m = B \end{array}$$

for i < j < m or j < i < m.

The proofs of $\mathcal{T} \cup \{A\} \vdash D_i$, $\mathcal{T} \cup \{A\} \vdash D_j$ are of lengths < m, therefore $\mathcal{T} \vdash A \to D_i$ $\mathcal{T} \vdash A \to D_j = A \to (D_i \to B)$

Proof of $\mathcal{T} \vdash A \rightarrow B$:

```
//BEGIN of proof of \mathcal{T} \vdash A \rightarrow D_i
                                    D_k = A \rightarrow D_i
                                    //END of proof of \mathcal{T} \vdash A \rightarrow D_i
                                    //BEGIN of proof of \mathcal{T} \vdash A \rightarrow D_i
                                    D_n = A \to \overbrace{(D_i \to B)}^{D_j}
                                    //\mathsf{END} of proof of \mathcal{T} \vdash A \to D_i
(C2) B := D_i, C := B : D_{n+1} = (A \to (D_i \to B)) \to ((A \to D_i) \to (A \to B))
         MP(D_n, D_{n+1}): D_{n+2} = (A \to D_i) \to (A \to B)
         MP(D_k, D_{n+2}): D_{n+3} = A \to B
```

Proof of $\mathcal{T} \vdash A \rightarrow B$:

```
//BEGIN of proof of \mathcal{T} \vdash A \rightarrow D_i
                                    //END of proof of \mathcal{T} \vdash A \rightarrow D_i
                                    //\mathsf{BEGIN} of proof of \mathcal{T} \vdash A \to D_j
                                    //\mathsf{END} of proof of \mathcal{T} \vdash A \to D_i
(C2) B := D_i, C := B : D_{n+1} = (A \to (D_i \to B)) \to ((A \to D_i) \to (A \to B))
         \mathsf{MP}(D_n,D_{n+1}): \quad D_{n+2} = (A \to D_i) \to (A \to B)
         MP(D_k, D_{n+2}): D_{n+3} = A \to B
```

Corollary Cor2
$$A \vdash A \lor B$$
 for all A, B

$$A \vdash \neg A \to B = A \lor B$$

$$\updownarrow (\mathsf{DT})$$

$$\mathsf{ALL}(A): \{A, \neg A\} \vdash B$$

 \Rightarrow we can add a deduction rule $\frac{A}{A \vee B}$ (and $\frac{B}{A \vee B}$ was already proved in Cl9)

Corollary Cor2
$$A \vdash A \lor B$$
 for all A, B

$$A \vdash \neg A \to B = A \lor B$$

$$\updownarrow \text{ (DT)}$$

$$\mathsf{ALL}(A): \{A, \neg A\} \vdash B$$

 \Rightarrow we can add a deduction rule $\frac{A}{A \vee B}$ (and $\frac{B}{A \vee B}$ was already proved in CI9)

$$A \vdash \neg \neg A$$

Corollary Cor3
$$A \vdash \neg \neg A$$
, $\vdash A \rightarrow \neg \neg A$ for all A

$$\begin{array}{c}
\neg \neg A \\
\vdash A \to (\neg A \to \mathbf{0}) \\
\updownarrow (\mathsf{DT}) \\
A \vdash \neg A \to \mathbf{0} \\
\updownarrow (\mathsf{DT}) \\
\downarrow (\mathsf{DT}) \\
\downarrow A \neg A \rbrace \vdash \mathbf{0}
\end{array}$$

$$\mathsf{ALL}(A): \quad \{A, \neg A\} \vdash \mathbf{0}$$

$$\neg \neg A \vdash A$$

Corollary Cor4
$$\neg \neg A \vdash A$$
, $\vdash \neg \neg A \rightarrow A$ for all A

Cor3,
$$A := \neg A : D_1 = \neg A \rightarrow \neg \neg \neg A$$

$$D_1 = \neg A \rightarrow \neg \neg \neg A$$

(C3)
$$B := \neg \neg A :$$

(C3)
$$B := \neg \neg A : D_2 := (\neg A \rightarrow \neg \neg \neg A) \rightarrow (\neg \neg A \rightarrow A)$$

$$MP(D_1, D_2)$$
:

$$MP(D_1, D_2): D_3 = \neg \neg A \rightarrow A$$

$$\vdash A \leftrightarrow \neg \neg A$$

Corollary Cor5 $\vdash A \leftrightarrow \neg \neg A$ (can be added to axioms)

How can we simplify our proofs?

$$B \leftrightarrow C \vdash (A \rightarrow B) \leftrightarrow (A \rightarrow C)$$

$$B \leftrightarrow C \vdash (B \rightarrow A) \leftrightarrow (C \rightarrow A)$$

$$A \vdash \neg \neg A$$

Corollary Cor3
$$A \vdash \neg \neg A$$
, $\vdash A \rightarrow \neg \neg A$ for all A

$$\begin{array}{c}
\neg \neg A \\
\vdash A \to (\neg A \to \mathbf{0}) \\
\updownarrow (\mathsf{DT}) \\
A \vdash \neg A \to \mathbf{0} \\
\updownarrow (\mathsf{DT}) \\
A \vdash \neg A \to \mathbf{0}
\end{array}$$

$$\mathsf{ALL}(A): \quad \{A, \neg A\} \vdash \mathbf{0}$$

$$\neg \neg A \vdash A$$
.

Corollary Cor4
$$\neg \neg A \vdash A$$
, $\vdash \neg \neg A \rightarrow A$ for all A

Cor3,
$$A:=\neg A:$$
 $D_1=\neg A\to \neg\neg\neg A$

Cor3,
$$A := \neg A : D_1 = \neg A \rightarrow \neg \neg \neg A$$

(C3) $B := \neg \neg A : D_2 := (\neg A \rightarrow \neg \neg \neg A) \rightarrow (\neg \neg A \rightarrow A)$

$$\mathsf{MP}(D_1,D_2): \quad D_3 = \neg \neg A \to A$$

$$\vdash A \leftrightarrow \neg \neg A$$

Corollary Cor5 $\vdash A \leftrightarrow \neg \neg A$ (can be added to axioms)

How can we simplify our proofs?

$$B \leftrightarrow C \vdash (A \rightarrow B) \leftrightarrow (A \rightarrow C)$$

$$B \leftrightarrow C \vdash (B \rightarrow A) \leftrightarrow (C \rightarrow A)$$