$$(A \wedge B) \vee (A \wedge B) \stackrel{?}{=} A$$

$$= A (B + 1 - B) = A \leq 1$$

$$= A (B + 1 - B) = A \leq 1$$

Fuzzy propositional algebras

equations written in **black** always hold equations written in **red** hold for the standard fuzzy operations, but not for some others equations written in **blue** hold only for some choices of fuzzy operations (not for the standard ones)

equations written in **black** always hold equations written in **red** hold for the standard fuzzy operations, but not for some others equations written in **blue** hold only for some choices of fuzzy operations (not for the standard ones)

55/85

is any operation $\dot{\to}$: $[0,1]^2 \to [0,1]$ which coincides with the classical implication on $\{0,1\}^2$. We would like to satisfy the following properties, but we do not require them as axioms:

$$\alpha \rightarrow \beta = 1 \Leftarrow \alpha \leq \beta$$
, (I1a)

$$\alpha \rightarrow \beta = 1 \Rightarrow \alpha \leq \beta$$
, (I1b)

$$1 \stackrel{\cdot}{\rightarrow} \beta = \beta$$
, (I2)

 $\dot{\rightarrow}$ is nonincreasing in the first argument and nondecreasing in the second, (I3)

$$\alpha \stackrel{\cdot}{\to} \beta = \neg \beta \stackrel{\cdot}{\to} \neg \alpha , \qquad (14)$$

$$\alpha \rightarrow (\beta \rightarrow \gamma) = \beta \rightarrow (\alpha \rightarrow \gamma),$$
 (I5)

Fuzzy implication

55/85

is any operation $\dot{\to}$: $[0,1]^2 \to [0,1]$ which coincides with the classical implication on $\{0,1\}^2$. We would like to satisfy the following properties, but we do not require them as axioms:

$$\alpha \xrightarrow{\cdot} \beta = 1 \Leftarrow \alpha \leq \beta$$
,

$$\alpha \xrightarrow{\cdot} \beta = 1 \Rightarrow \alpha \leq \beta$$
,

$$1 \rightarrow \beta = \beta$$
,

 $\dot{
ightarrow}$ is nonincreasing in the first argument and nondecreasing in the second,

$$\alpha \stackrel{\cdot}{\rightarrow} \beta = \neg \beta \stackrel{\cdot}{\rightarrow} \neg \alpha,$$

(15)

continuity.

(16)

56/85

is an operation

$$\alpha \xrightarrow{\mathbf{R}} \beta = \sup\{\gamma : \alpha \land \gamma \leq \beta\},$$

where \wedge is a fuzzy conjunction

(if \land is continuous, we may take the maximum instead of the supremum)

(RI)

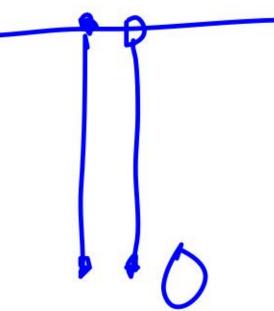
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup\{\gamma : \alpha \land \gamma \leq \beta\},\,$$

(RI)

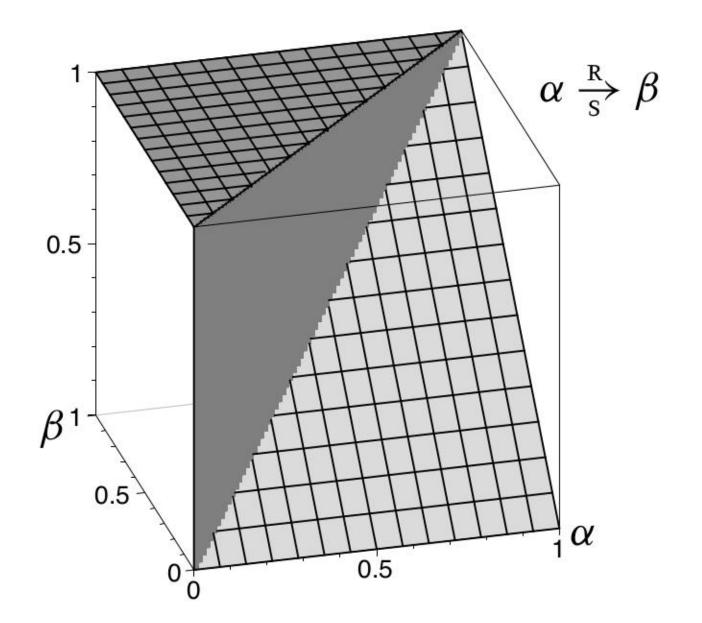
where \wedge is a fuzzy conjunction



57/85

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \beta & \text{otherwise.} \end{cases}$$

It is piecewise linear and continuous except for the points (α, α) , $\alpha < 1$.



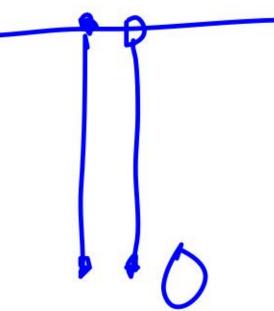
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup \{ \gamma : \alpha \land \gamma \leq \beta \},\,$$

(RI)

where \wedge is a fuzzy conjunction



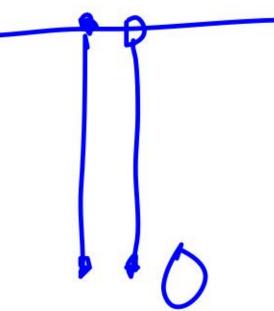
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup \{ \gamma : \alpha \land \gamma \leq \beta \},\,$$

(RI)

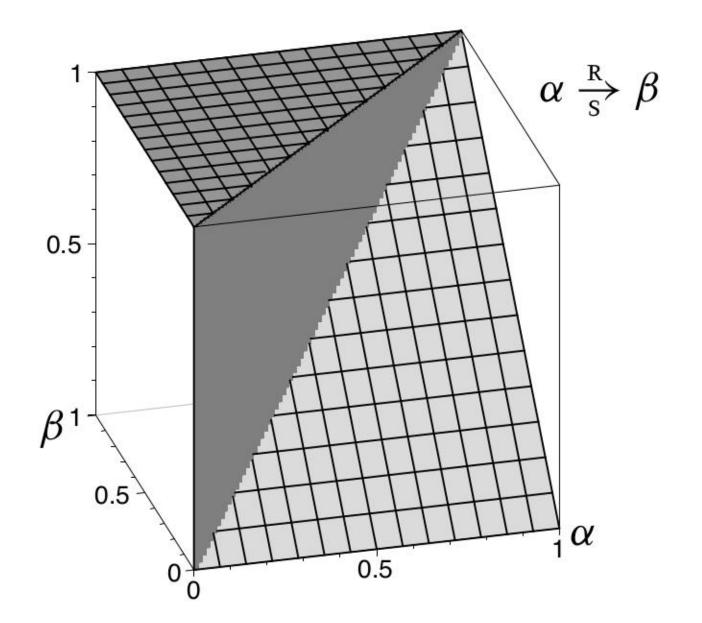
where \wedge is a fuzzy conjunction



57/85

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \beta & \text{otherwise.} \end{cases}$$

It is piecewise linear and continuous except for the points (α, α) , $\alpha < 1$.

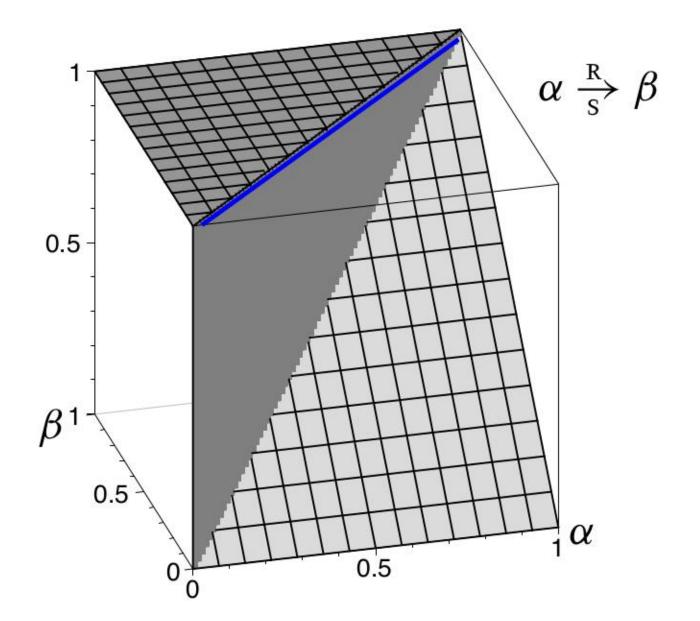


57/85

ullet From the standard conjunction ${\begin{subarray}{c} \end{subarray}}$ we obtain the **Gödel implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \beta & \text{otherwise.} \end{cases}$$

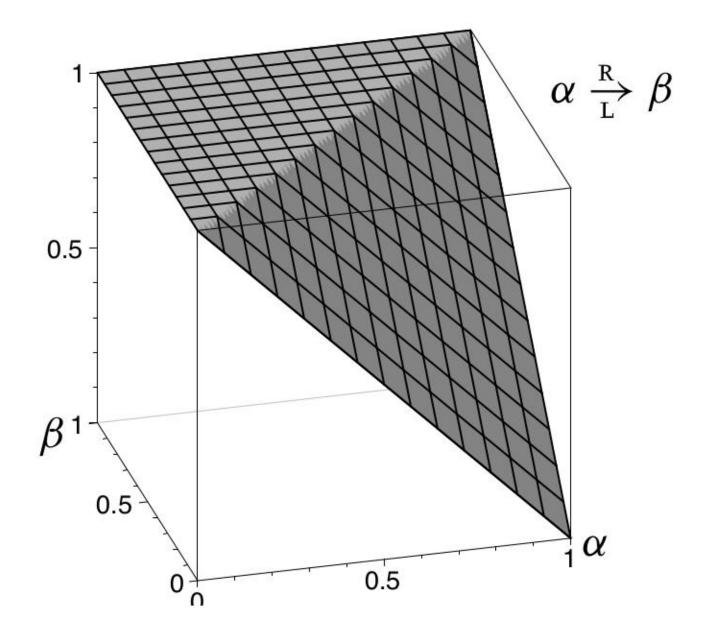
It is piecewise linear and continuous except for the points (α, α) , $\alpha < 1$.



From the Łukasiewicz conjunction $\bigwedge_{\Gamma_{L}}$ we obtain the Łukasiewicz implication

$$\alpha \xrightarrow[]{R} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ 1 - \alpha + \beta & \text{otherwise.} \end{cases}$$

It is piecewise linear and continuous.



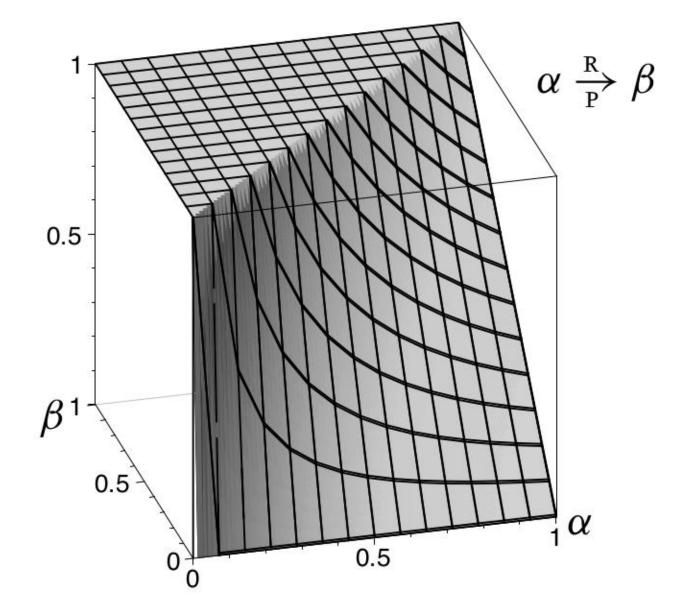
58/85

59/85

ullet From the product conjunction $\bigwedge\limits_{
m P}$ we obtain the **Goguen** (also **Gaines**) **implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \frac{\beta}{\alpha} & \text{otherwise.} \end{cases}$$

It has one point of discontinuity, (0,0).

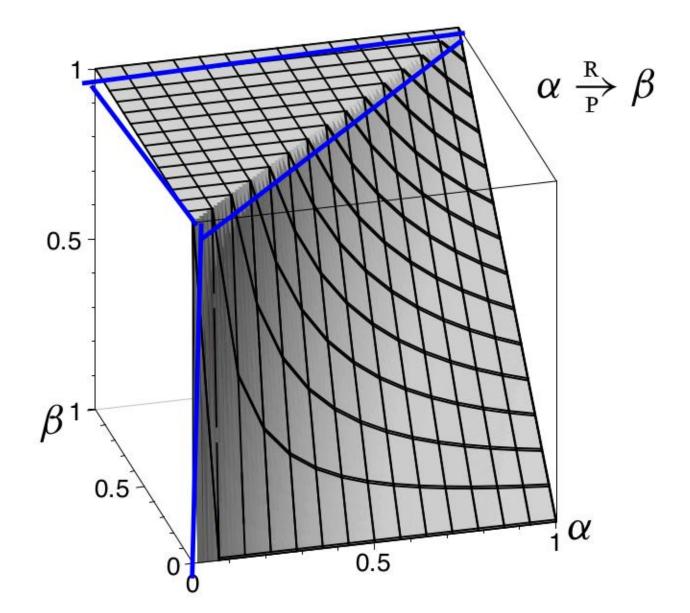


59/85

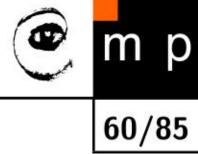
From the product conjunction $\bigwedge\limits_{P}$ we obtain the **Goguen** (also **Gaines**) **implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \frac{\beta}{\alpha} & \text{otherwise.} \end{cases}$$

It has one point of discontinuity, (0,0).



Properties of R-implications



Theorem: Let \land be a continuous fuzzy conjunction. Then the R-implication $\stackrel{R}{\rightarrow}$ satisfies (I1a), (I1b), (I2), (I3).

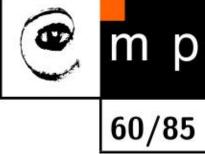
Proof: $\alpha \stackrel{\mathrm{R}}{\to} \beta = \sup \Gamma(\alpha, \beta)$, where

 $\Gamma(\alpha,\beta)=\{\gamma:\ \alpha\land\gamma\leq\beta\}$ is an interval containing zero. (Moreover, due to the continuity of \land the interval is closed.)

- (I1a) If $\alpha \leq \beta$, then $\Gamma(\alpha, \beta) = [0, 1]$, $\sup \Gamma(\alpha, \beta) = 1$.
- (I1b) If $\alpha > \beta$, then $1 \notin \Gamma(\alpha, \beta)$, $\sup \Gamma(\alpha, \beta) < 1$ (from the closedness of $\Gamma(\alpha, \beta)$).
- (I2): $1 \stackrel{\text{R}}{\to} \beta = \sup\{\gamma : \gamma \leq \beta\} = \beta$.
- (I3): When α increases, $\Gamma(\alpha, \beta)$ does not increase. When β increases, $\Gamma(\alpha, \beta)$ does not decrease.

Theorem: A residuated fuzzy implication induced by a **continuous** fuzzy conjunction \wedge is continuous iff \wedge is nilpotent.

Properties of R-implications



Theorem: Let \land be a continuous fuzzy conjunction Then the R-implication $\stackrel{R}{\rightarrow}$ satisfies (I1a), (I1b), (I2), (I3).

Proof: $\alpha \stackrel{\mathbb{R}}{\to} \beta = \sup \Gamma(\alpha, \beta)$, where

 $\Gamma(\alpha,\beta)=\{\gamma:\ \alpha\land\gamma\le\beta\}$ is an interval containing zero. (Moreover, due to the continuity of \land the interval is closed.)

- (I1a) If $\alpha \leq \beta$, then $\Gamma(\alpha, \beta) = [0, 1]$, $\sup \Gamma(\alpha, \beta) = 1$.
- (I1b) If $\alpha > \beta$, then $1 \notin \Gamma(\alpha, \beta)$, $\sup \Gamma(\alpha, \beta) < 1$ (from the closedness of $\Gamma(\alpha, \beta)$).
- (I2): $1 \stackrel{\text{R}}{\to} \beta = \sup\{\gamma : \gamma \leq \beta\} = \beta$.
- (I3): When α increases, $\Gamma(\alpha, \beta)$ does not increase. When β increases, $\Gamma(\alpha, \beta)$ does not decrease.

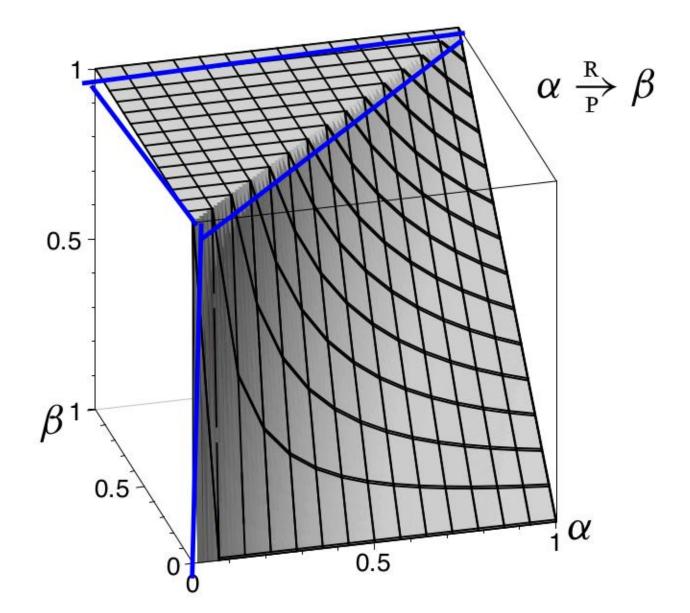
Theorem: A residuated fuzzy implication induced by a **continuous** fuzzy conjunction \wedge is continuous iff \wedge is nilpotent.

59/85

From the product conjunction $\bigwedge\limits_{P}$ we obtain the **Goguen** (also **Gaines**) **implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \frac{\beta}{\alpha} & \text{otherwise.} \end{cases}$$

It has one point of discontinuity, (0,0).

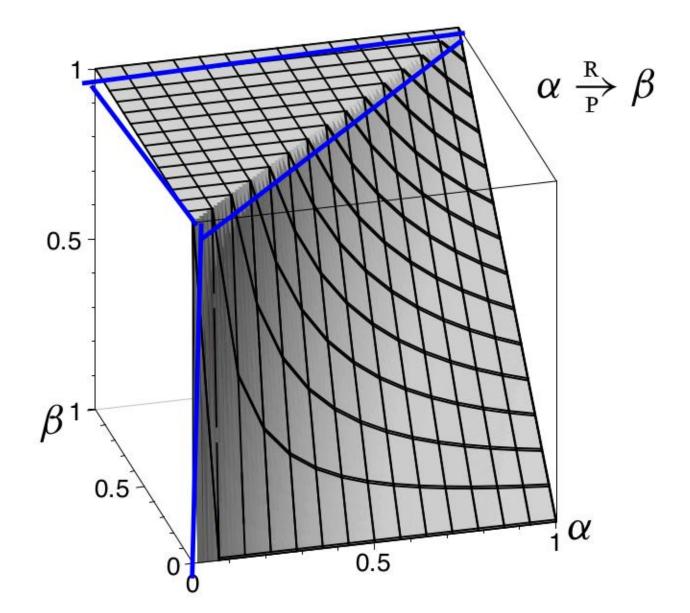


59/85

From the product conjunction $\bigwedge\limits_{P}$ we obtain the **Goguen** (also **Gaines**) **implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \frac{\beta}{\alpha} & \text{otherwise.} \end{cases}$$

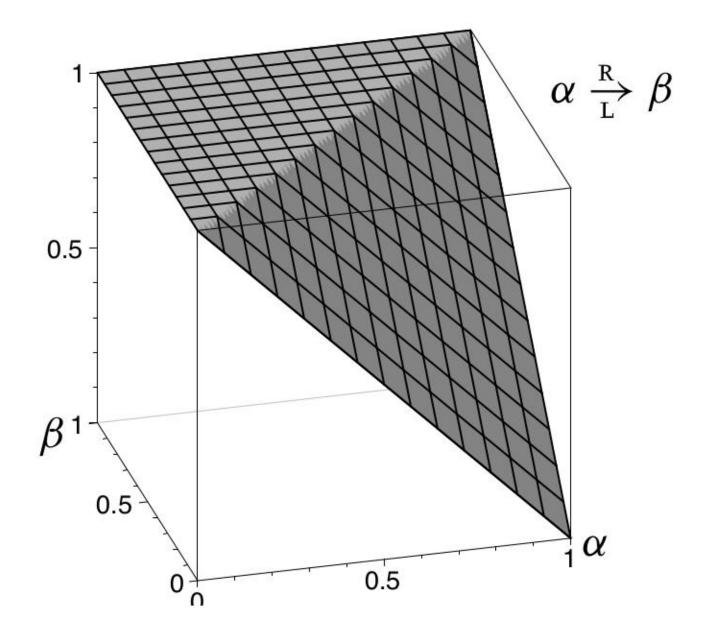
It has one point of discontinuity, (0,0).



From the Łukasiewicz conjunction $\bigwedge_{\Gamma_{L}}$ we obtain the Łukasiewicz implication

$$\alpha \xrightarrow[]{R} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ 1 - \alpha + \beta & \text{otherwise.} \end{cases}$$

It is piecewise linear and continuous.



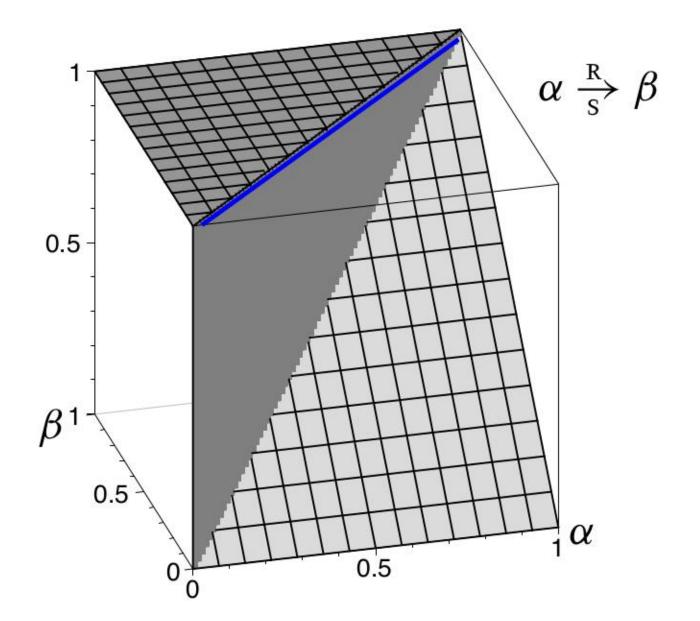
58/85

57/85

ullet From the standard conjunction ${\begin{subarray}{c} \end{subarray}}$ we obtain the **Gödel implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \beta & \text{otherwise.} \end{cases}$$

It is piecewise linear and continuous except for the points (α, α) , $\alpha < 1$.

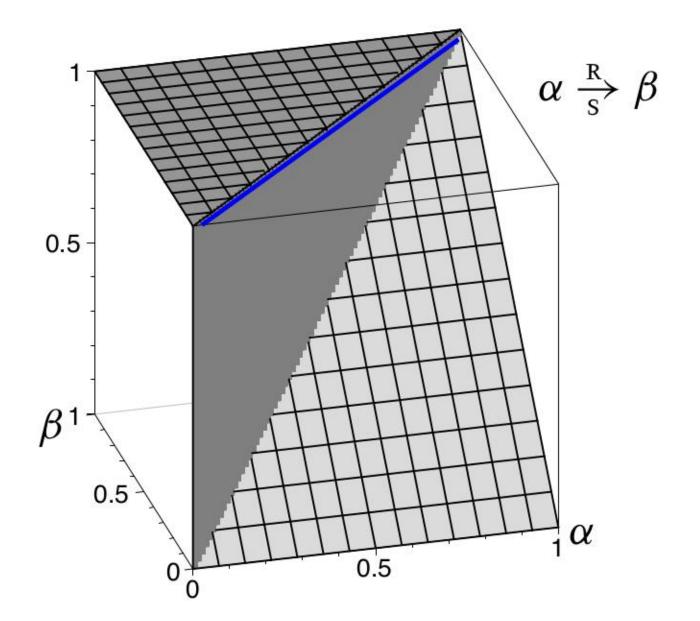


57/85

ullet From the standard conjunction ${\begin{subarray}{c} \end{subarray}}$ we obtain the **Gödel implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \beta & \text{otherwise.} \end{cases}$$

It is piecewise linear and continuous except for the points (α, α) , $\alpha < 1$.



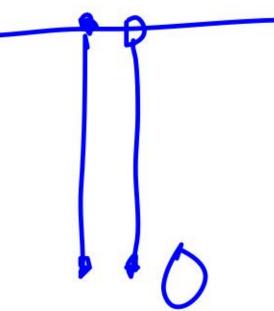
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup \{ \gamma : \alpha \land \gamma \leq \beta \},\,$$

(RI)

where \wedge is a fuzzy conjunction



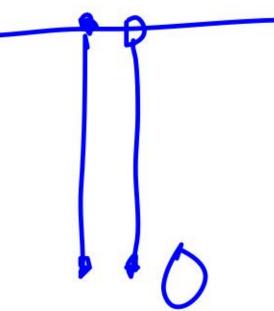
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup \{ \gamma : \alpha \land \gamma \leq \beta \},\,$$

(RI)

where \wedge is a fuzzy conjunction



Fuzzy implication

55/85

is any operation $\dot{\to}$: $[0,1]^2 \to [0,1]$ which coincides with the classical implication on $\{0,1\}^2$. We would like to satisfy the following properties, but we do not require them as axioms:

$$\alpha \xrightarrow{\cdot} \beta = 1 \Leftarrow \alpha \leq \beta$$
,

$$\alpha \xrightarrow{\cdot} \beta = 1 \Rightarrow \alpha \leq \beta$$
,

$$1 \rightarrow \beta = \beta$$
,

 $\dot{
ightarrow}$ is nonincreasing in the first argument and nondecreasing in the second,

$$\alpha \stackrel{\cdot}{\rightarrow} \beta = \neg \beta \stackrel{\cdot}{\rightarrow} \neg \alpha,$$

(15)

continuity.

(16)

Fuzzy implication

55/85

is any operation $\dot{\to}$: $[0,1]^2 \to [0,1]$ which coincides with the classical implication on $\{0,1\}^2$. We would like to satisfy the following properties, but we do not require them as axioms:

$$\alpha \xrightarrow{\cdot} \beta = 1 \Leftarrow \alpha \leq \beta$$
,

$$\alpha \xrightarrow{\cdot} \beta = 1 \Rightarrow \alpha \leq \beta$$
,

$$1 \rightarrow \beta = \beta$$
,

 $\dot{
ightarrow}$ is nonincreasing in the first argument and nondecreasing in the second,

$$\alpha \stackrel{\cdot}{\rightarrow} \beta = \neg \beta \stackrel{\cdot}{\rightarrow} \neg \alpha,$$

(15)

continuity.

(16)

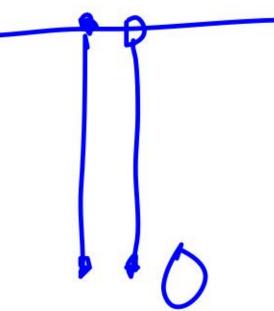
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup \{ \gamma : \alpha \land \gamma \leq \beta \},\,$$

(RI)

where \wedge is a fuzzy conjunction



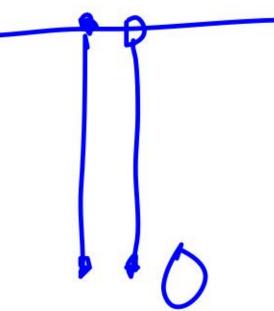
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup \{ \gamma : \alpha \land \gamma \leq \beta \},\,$$

(RI)

where \wedge is a fuzzy conjunction



Fuzzy implication

55/85

is any operation $\dot{\to}$: $[0,1]^2 \to [0,1]$ which coincides with the classical implication on $\{0,1\}^2$. We would like to satisfy the following properties, but we do not require them as axioms:

$$\alpha \xrightarrow{\cdot} \beta = 1 \Leftarrow \alpha \leq \beta$$
,

$$\alpha \xrightarrow{\cdot} \beta = 1 \Rightarrow \alpha \leq \beta$$
,

$$1 \rightarrow \beta = \beta$$
,

 $\dot{
ightarrow}$ is nonincreasing in the first argument and nondecreasing in the second,

$$\alpha \stackrel{\cdot}{\rightarrow} \beta = \neg \beta \stackrel{\cdot}{\rightarrow} \neg \alpha,$$

(15)

continuity.

(16)

Fuzzy implication

55/85

is any operation $\dot{\to}$: $[0,1]^2 \to [0,1]$ which coincides with the classical implication on $\{0,1\}^2$. We would like to satisfy the following properties, but we do not require them as axioms:

$$\alpha \xrightarrow{\cdot} \beta = 1 \Leftarrow \alpha \leq \beta$$
,

$$\alpha \xrightarrow{\cdot} \beta = 1 \Rightarrow \alpha \leq \beta$$
,

$$1 \rightarrow \beta = \beta$$
,

 $\dot{
ightarrow}$ is nonincreasing in the first argument and nondecreasing in the second,

$$\alpha \stackrel{\cdot}{\rightarrow} \beta = \neg \beta \stackrel{\cdot}{\rightarrow} \neg \alpha,$$

(15)

continuity.

(16)

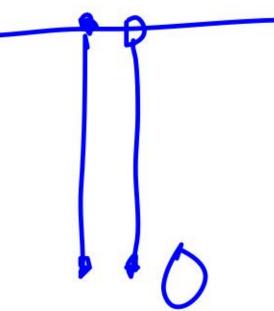
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup \{ \gamma : \alpha \land \gamma \leq \beta \},\,$$

(RI)

where \wedge is a fuzzy conjunction



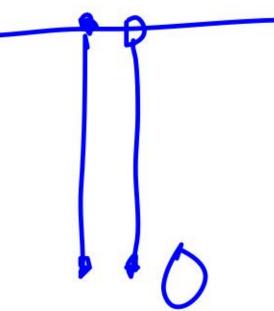
56/85

is an operation

$$\alpha \xrightarrow{\mathbb{R}} \beta = \sup \{ \gamma : \alpha \land \gamma \leq \beta \},\,$$

(RI)

where \wedge is a fuzzy conjunction

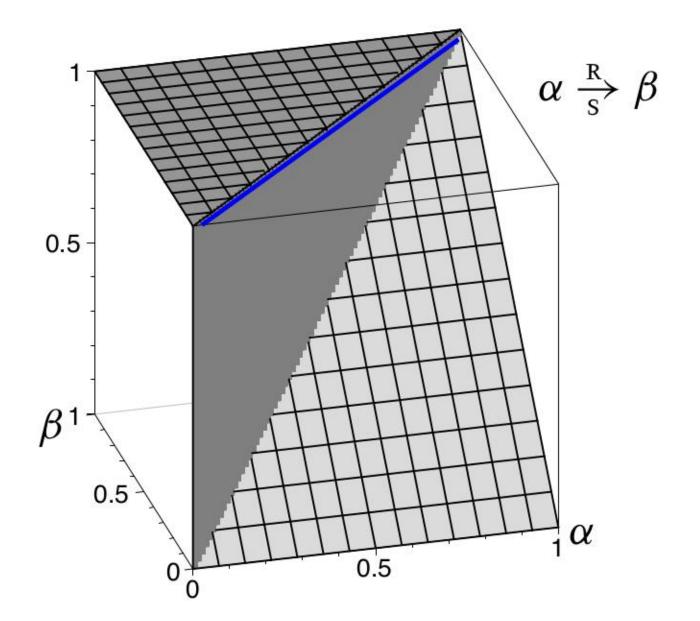


57/85

ullet From the standard conjunction ${\begin{subarray}{c} \end{subarray}}$ we obtain the **Gödel implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \beta & \text{otherwise.} \end{cases}$$

It is piecewise linear and continuous except for the points (α, α) , $\alpha < 1$.

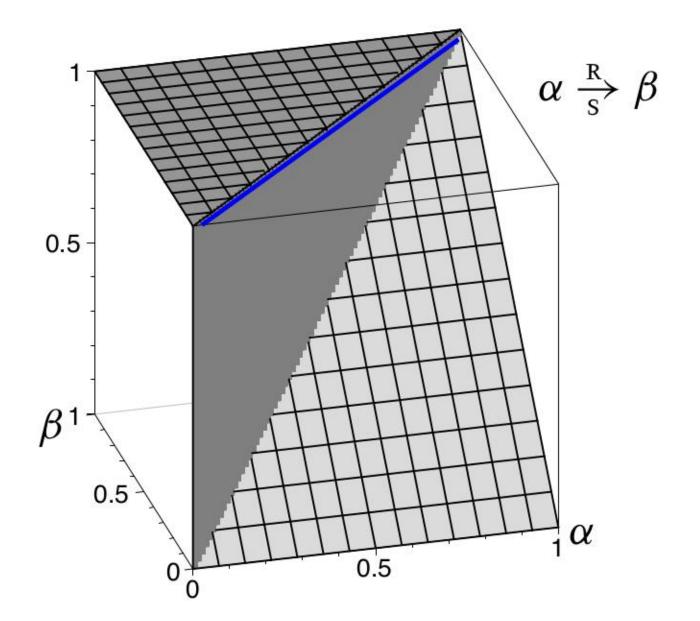


57/85

ullet From the standard conjunction ${\begin{subarray}{c} \end{subarray}}$ we obtain the **Gödel implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \beta & \text{otherwise.} \end{cases}$$

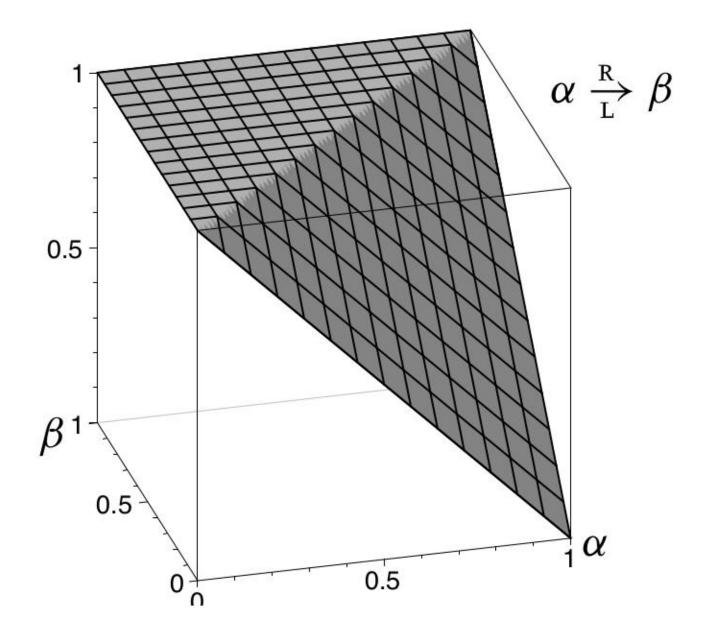
It is piecewise linear and continuous except for the points (α, α) , $\alpha < 1$.



From the Łukasiewicz conjunction $\bigwedge_{\Gamma_{L}}$ we obtain the Łukasiewicz implication

$$\alpha \xrightarrow[]{R} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ 1 - \alpha + \beta & \text{otherwise.} \end{cases}$$

It is piecewise linear and continuous.



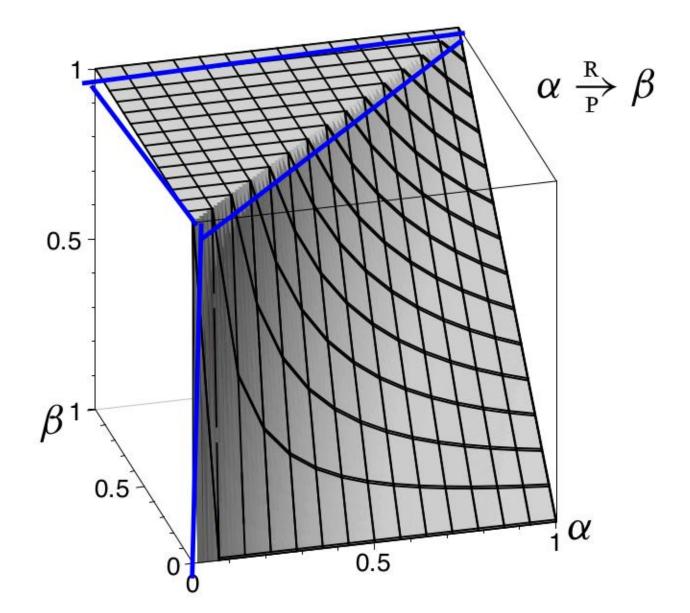
58/85

59/85

From the product conjunction $\bigwedge\limits_{P}$ we obtain the **Goguen** (also **Gaines**) **implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \frac{\beta}{\alpha} & \text{otherwise.} \end{cases}$$

It has one point of discontinuity, (0,0).

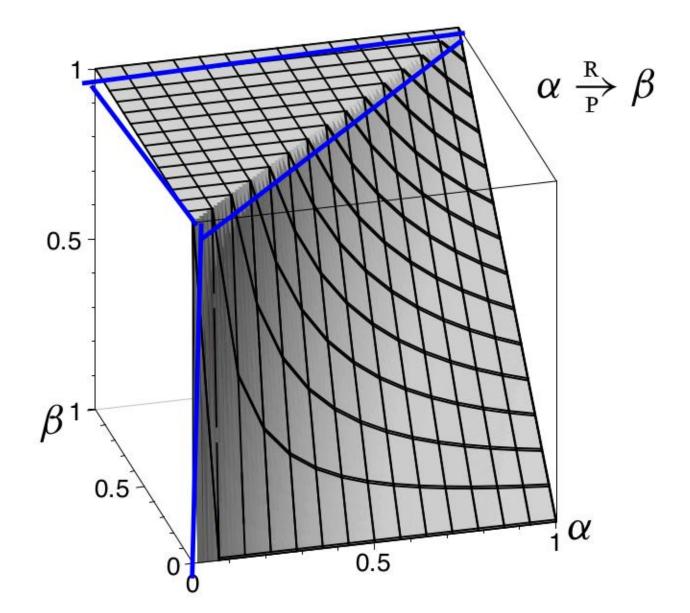


59/85

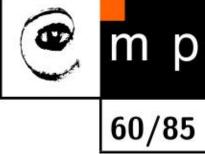
From the product conjunction $\bigwedge\limits_{P}$ we obtain the **Goguen** (also **Gaines**) **implication**

$$\alpha \xrightarrow{\mathbf{R}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \frac{\beta}{\alpha} & \text{otherwise.} \end{cases}$$

It has one point of discontinuity, (0,0).



Properties of R-implications



Theorem: Let \land be a continuous fuzzy conjunction Then the R-implication $\stackrel{R}{\rightarrow}$ satisfies (I1a), (I1b), (I2), (I3).

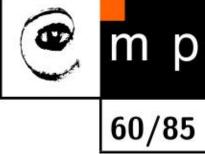
Proof: $\alpha \stackrel{\mathbb{R}}{\to} \beta = \sup \Gamma(\alpha, \beta)$, where

 $\Gamma(\alpha,\beta)=\{\gamma:\ \alpha\land\gamma\le\beta\}$ is an interval containing zero. (Moreover, due to the continuity of \land the interval is closed.)

- (I1a) If $\alpha \leq \beta$, then $\Gamma(\alpha, \beta) = [0, 1]$, $\sup \Gamma(\alpha, \beta) = 1$.
- (I1b) If $\alpha > \beta$, then $1 \notin \Gamma(\alpha, \beta)$, $\sup \Gamma(\alpha, \beta) < 1$ (from the closedness of $\Gamma(\alpha, \beta)$).
- (I2): $1 \stackrel{\text{R}}{\to} \beta = \sup\{\gamma : \gamma \leq \beta\} = \beta$.
- (I3): When α increases, $\Gamma(\alpha, \beta)$ does not increase. When β increases, $\Gamma(\alpha, \beta)$ does not decrease.

Theorem: A residuated fuzzy implication induced by a **continuous** fuzzy conjunction \wedge is continuous iff \wedge is nilpotent.

Properties of R-implications



Theorem: Let \land be a continuous fuzzy conjunction Then the R-implication $\stackrel{R}{\rightarrow}$ satisfies (I1a), (I1b), (I2), (I3).

Proof: $\alpha \stackrel{\mathbb{R}}{\to} \beta = \sup \Gamma(\alpha, \beta)$, where

 $\Gamma(\alpha,\beta)=\{\gamma:\ \alpha\land\gamma\le\beta\}$ is an interval containing zero. (Moreover, due to the continuity of \land the interval is closed.)

- (I1a) If $\alpha \leq \beta$, then $\Gamma(\alpha, \beta) = [0, 1]$, $\sup \Gamma(\alpha, \beta) = 1$.
- (I1b) If $\alpha > \beta$, then $1 \notin \Gamma(\alpha, \beta)$, $\sup \Gamma(\alpha, \beta) < 1$ (from the closedness of $\Gamma(\alpha, \beta)$).
- (I2): $1 \stackrel{\text{R}}{\to} \beta = \sup\{\gamma : \gamma \leq \beta\} = \beta$.
- (I3): When α increases, $\Gamma(\alpha, \beta)$ does not increase. When β increases, $\Gamma(\alpha, \beta)$ does not decrease.

Theorem: A residuated fuzzy implication induced by a **continuous** fuzzy conjunction \wedge is continuous iff \wedge is nilpotent.

S-implication

61/85

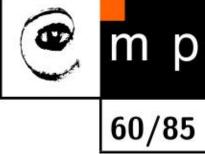
(SI)

is an operation

$$\alpha \xrightarrow{\mathbf{S}} \beta = \neg \alpha \dot{\vee} \beta$$

where $\dot{\lor}$ is a fuzzy disjunction.

Properties of R-implications



Theorem: Let \land be a continuous fuzzy conjunction Then the R-implication $\stackrel{R}{\rightarrow}$ satisfies (I1a), (I1b), (I2), (I3).

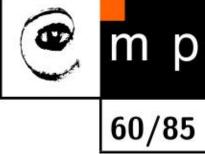
Proof: $\alpha \stackrel{\mathbb{R}}{\to} \beta = \sup \Gamma(\alpha, \beta)$, where

 $\Gamma(\alpha,\beta)=\{\gamma:\ \alpha\land\gamma\le\beta\}$ is an interval containing zero. (Moreover, due to the continuity of \land the interval is closed.)

- (I1a) If $\alpha \leq \beta$, then $\Gamma(\alpha, \beta) = [0, 1]$, $\sup \Gamma(\alpha, \beta) = 1$.
- (I1b) If $\alpha > \beta$, then $1 \notin \Gamma(\alpha, \beta)$, $\sup \Gamma(\alpha, \beta) < 1$ (from the closedness of $\Gamma(\alpha, \beta)$).
- (I2): $1 \stackrel{\text{R}}{\to} \beta = \sup\{\gamma : \gamma \leq \beta\} = \beta$.
- (I3): When α increases, $\Gamma(\alpha, \beta)$ does not increase. When β increases, $\Gamma(\alpha, \beta)$ does not decrease.

Theorem: A residuated fuzzy implication induced by a **continuous** fuzzy conjunction \wedge is continuous iff \wedge is nilpotent.

Properties of R-implications



Theorem: Let \land be a continuous fuzzy conjunction Then the R-implication $\stackrel{R}{\rightarrow}$ satisfies (I1a), (I1b), (I2), (I3).

Proof: $\alpha \stackrel{\mathbb{R}}{\to} \beta = \sup \Gamma(\alpha, \beta)$, where

 $\Gamma(\alpha,\beta)=\{\gamma:\ \alpha\land\gamma\le\beta\}$ is an interval containing zero. (Moreover, due to the continuity of \land the interval is closed.)

- (I1a) If $\alpha \leq \beta$, then $\Gamma(\alpha, \beta) = [0, 1]$, $\sup \Gamma(\alpha, \beta) = 1$.
- (I1b) If $\alpha > \beta$, then $1 \notin \Gamma(\alpha, \beta)$, $\sup \Gamma(\alpha, \beta) < 1$ (from the closedness of $\Gamma(\alpha, \beta)$).
- (I2): $1 \stackrel{\text{R}}{\to} \beta = \sup\{\gamma : \gamma \leq \beta\} = \beta$.
- (I3): When α increases, $\Gamma(\alpha, \beta)$ does not increase. When β increases, $\Gamma(\alpha, \beta)$ does not decrease.

Theorem: A residuated fuzzy implication induced by a **continuous** fuzzy conjunction \wedge is continuous iff \wedge is nilpotent.

S-implication

61/85

(SI)

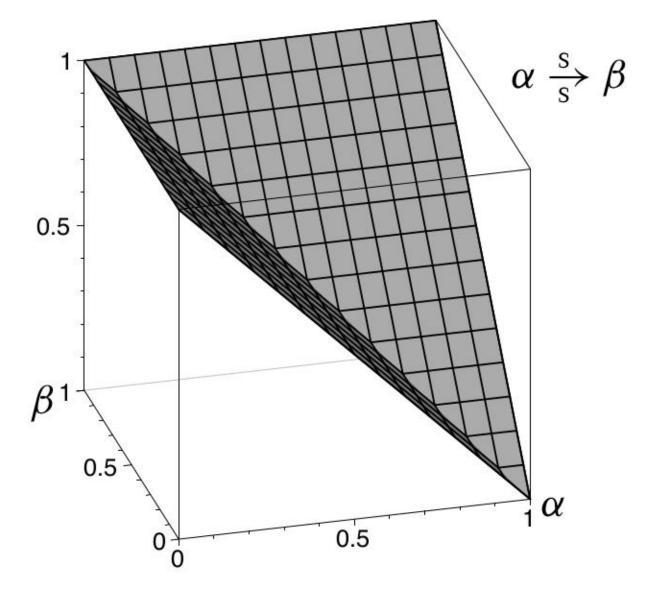
is an operation

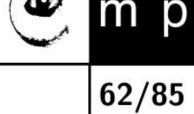
$$\alpha \xrightarrow{\mathbf{S}} \beta = \neg \alpha \dot{\vee} \beta$$

where $\dot{\lor}$ is a fuzzy disjunction.

From the standard disjunction we obtain the Kleene-Dienes implication

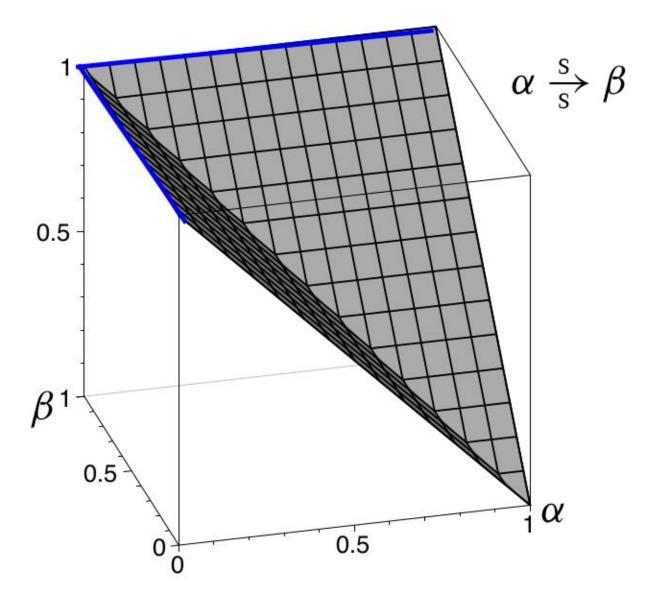
$$\alpha \xrightarrow{\mathbf{S}} \beta = \max(1 - \alpha, \beta)$$
.

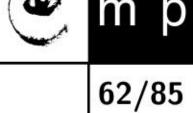


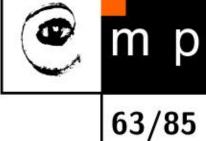


From the standard disjunction we obtain the Kleene-Dienes implication

$$\alpha \xrightarrow{\mathbf{S}} \beta = \max(1 - \alpha, \beta)$$
.



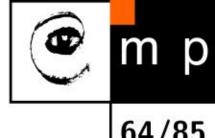




• From the Łukasiewicz disjunction we obtain the Łukasiewicz implication $\overset{s}{\underset{L}{\longrightarrow}}$ which coincides with the Łukasiewicz residuated implication $\overset{R}{\underset{L}{\longrightarrow}}$.

Among all fuzzy implications studied here, only residuated implications induced by nilpotent fuzzy conjunctions (e.g., the Łukasiewicz implication) satisfy all properties (I1a),(I1b),(I2)–(I6).

Fuzzy biimplication (equivalence)



is an operation \leftrightarrow usually defined by

$$\alpha \stackrel{\cdot}{\leftrightarrow} \beta = (\alpha \stackrel{\cdot}{\rightarrow} \beta) \wedge (\beta \stackrel{\cdot}{\rightarrow} \alpha),$$

where $\dot{\rightarrow}$ is a fuzzy implication and \land is a fuzzy conjunction. (Biimplications are distinguished by the same indices as the respective fuzzy implications.)

If $\dot{\rightarrow}$ satisfies (I1a) (e.g., for a residuated implication), at least one of the brackets equals 1, hence the choice of the fuzzy conjunction \land is irrelevant.

Example: Lukasiewicz biimplication: $\alpha \overset{\mathbb{R}}{\underset{\mathbb{L}}{\longleftrightarrow}} \beta = 1 - |\alpha - \beta|.$

Fuzzy biimplication (equivalence)

64/85

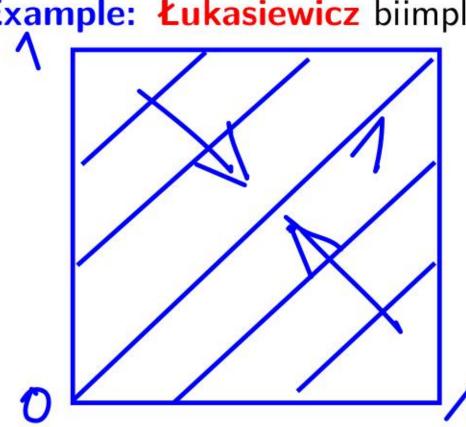
where \rightarrow is a fuzzy implication and \wedge is a fuzzy conjunction.

(Biimplications are distinguished by the same indices as the respective fuzzy implications.)

If \rightarrow satisfies (I1a) (e.g., for a residuated implication), at least one of the brackets equals 1, hence the choice of the fuzzy conjunction ∧ is irrelevant.

Example: Lukasiewicz biimplication: $\alpha \stackrel{\mathbb{R}}{\leftrightarrow} \beta = 1 - |\alpha - \beta|$.

$$\alpha \stackrel{\mathbf{R}}{\longleftrightarrow} \beta = 1 - |\alpha - \beta|$$



Classical relations

65/85

A binary relation is an $R \subseteq X \times Y$

Inverse relation to R: $R^{-1} \subseteq Y \times X$:

$$R^{-1} = \{ (y, x) \in Y \times X : (x, y) \in R \}$$

The composition of relations $R \subseteq X \times Y$, $S \subseteq Y \times Z$ is $R \circ S \subseteq X \times Z$:

$$R \circ S = \left\{ (x, z) \in X \times Z : \left(\exists y \in Y : (x, y) \in R, (y, z) \in S \right) \right\}$$

Using membership functions:

$$\mu_R : X \times Y \to \{0, 1\}$$

$$\mu_{R^{-1}}(y, x) = \mu_R(x, y)$$

$$\mu_{R \circ S}(x, z) = \max_{y \in Y} \left(\mu_R(x, y) \land \mu_S(y, z)\right)$$

Classical relations

65/85

A binary relation is an $R \subseteq X \times Y$

Inverse relation to R: $R^{-1} \subseteq Y \times X$:

$$R^{-1} = \{ (y, x) \in Y \times X : (x, y) \in R \}$$

The composition of relations $R \subseteq X \times Y$, $S \subseteq Y \times Z$ is $R \circ S \subseteq X \times Z$:

$$R \circ S = \left\{ (x, z) \in X \times Z : \left(\exists y \in Y : (x, y) \in R, (y, z) \in S \right) \right\}$$

Using membership functions:

$$\mu_R : X \times Y \to \{0, 1\}$$

$$\mu_{R^{-1}}(y, x) = \mu_R(x, y)$$

$$\mu_{R \circ S}(x, z) = \max_{y \in Y} \left(\mu_R(x, y) \land \mu_S(y, z)\right)$$

Classical relations

65/85

A binary relation is an $R \subseteq X \times Y$

Inverse relation to
$$R\colon R^{-1}\subseteq Y\times X\colon$$

$$R^{-1}=\{(y,x)\in Y\times X:\ (x,y)\in R\}$$

The **composition** of relations
$$R\subseteq X\times Y$$
 $S\subseteq Y\times Z$ is $R\circ S\subseteq X\times Z$:
$$R\circ S=\left\{(x,z)\in X\times Z: \left(\exists y\in Y: (x,y)\in R, (y,z)\in S\right)\right\}$$

Using membership functions:

$$\mu_R: X\times Y\to \{0,1\}$$

$$\mu_{R^{-1}}(y,x)=\mu_R(x,y)$$

$$\mu_{R\circ S}(x,z)=\max_{y\in Y}\bigl(\mu_R(x,y)\wedge\mu_S(y,z)\bigr)$$

Fuzzy relations

|66/85

A fuzzy relation is
$$R \in \mathcal{F}(X \times Y)$$
, $\mu_R : X \times Y \to [0,1]$

The inverse relation to R is $R^{-1} \in \mathcal{F}(Y \times X)$:

$$\forall x \in X \ \forall y \in Y : \mu_{R^{-1}}(y, x) = \mu_R(x, y)$$

The \cdot -composition of relations $R \in \mathcal{F}(X \times Y)$, $S \in \mathcal{F}(Y \times Z)$ is $R \circ S \in \mathcal{F}(X \times Z)$:

$$\mu_{R \circ S}(x, z) = \sup_{y \in Y} \left(\mu_R(x, y) \wedge \mu_S(y, z) \right)$$

Theorem The inversion of fuzzy relations is cut-consistent.

Theorem If Y is a finite set, then the standard composition of fuzzy relations $R \in \mathcal{F}(X \times Y)$, $S \in \mathcal{F}(Y \times Z)$ is cut-consistent.

Fuzzy relations

66/85

A fuzzy relation is $R \in \mathcal{F}(X \times Y)$, $\mu_R : X \times Y \to [0,1]$

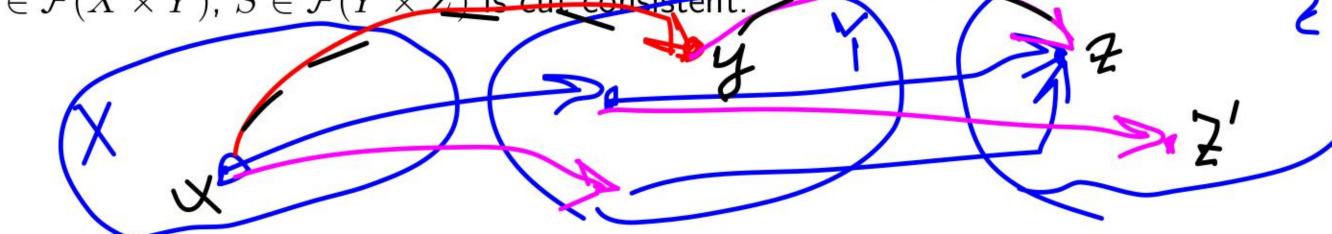
The inverse relation to R is $R^{-1} \in \mathcal{F}(Y \times X)$:

$$\forall x \in X \ \forall y \in Y : \mu_{R^{-1}}(y, x) = \mu_R(x, y)$$

The --composition of relations $R \in \mathcal{F}(X \times Y)$, $S \in \mathcal{F}(Y \times Z)$ is $R \circ S \in \mathcal{F}(X \times Z)$: $\mu_{R \circ S}(x,z) = \sup_{u \in Y} \left(\mu_R(x,y) \wedge \mu_S(y,z)\right)$

Theorem The inversion of fuzzy relations is cut-consistent.

Theorem If Y is a finite set, then the standard composition of fuzzy relations $R \in \mathcal{F}(X \times Y)$, $S \in \mathcal{F}(Y \times Z)$ is cut consistent.



Special crisp relations

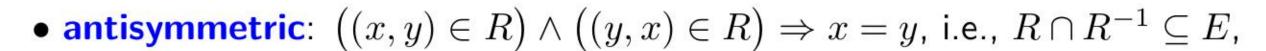
 $R \subseteq X \times X$ can be:

- ullet an equality: $E = \{(x, x) : x \in X\}$,
- reflexive: $\forall x \in X : (x, x) \in R$, i.e., $E \subseteq R$,
- symmetric: $(x,y) \in R \Rightarrow (y,x) \in R$, i.e., $R = R^{-1}$,
- antisymmetric: $((x,y) \in R) \land ((y,x) \in R) \Rightarrow x = y$, i.e., $R \cap R^{-1} \subseteq E$,
- transitive: $((x,y) \in R) \land ((y,z) \in R) \Rightarrow (x,z) \in R$, i.e., $R \circ R \subseteq R$,
- a partial order: antisymmetric, reflexive, and transitive,
- an equivalence: symmetric, reflexive, and transitive.

The membership function of the equality relation, $E \subseteq X \times X$, is the Kronecker delta:

$$\mu_E(x,y) = \delta(x,y) = \begin{cases} 1 & \text{for } x = y, \\ 0 & \text{for } x \neq y. \end{cases}$$

- ullet an equality: $E = \{(x, x) : x \in X\}$,
- reflexive: $\forall x \in X : (x, x) \in R$, i.e., $E \subseteq R$,
- symmetric: $(x,y) \in R \Rightarrow (y,x) \in R$, i.e., $R = R^{-1}$,

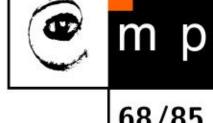


- transitive: $((x,y) \in R) \land ((y,z) \in R) \Rightarrow (x,z) \in R$, i.e., $R \circ R \subseteq R$,
- a partial order: antisymmetric, reflexive, and transitive,
- an equivalence: symmetric, reflexive, and transitive.

The membership function of the equality relation, $E \subseteq X \times X$, is the Kronecker delta:

$$\mu_E(x,y) = \delta(x,y) = \begin{cases} 1 & \text{for } x = y, \\ 0 & \text{for } x \neq y. \end{cases}$$

Special fuzzy relations

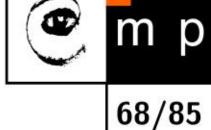


A fuzzy relation $R \in \mathcal{F}(X \times X)$ can be:

- reflexive: $E \subseteq R$,
- symmetric: $R = R^{-1}$,
- ·-antisymmetric: $R \cap R^{-1} \subseteq E$,
- · -transitive: $R \circ R \subseteq R$,
- a ·-partial order: ·-antisymmetric, reflexive, and ·-transitive,
- an ·-equivalence: symmetric, reflexive, and ·-transitive.

The last four terms depend on the choice of the fuzzy conjunction \wedge .

Special fuzzy relations

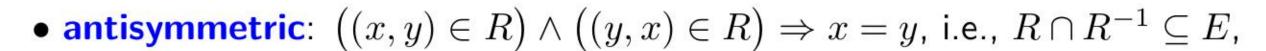


A fuzzy relation $R \in \mathcal{F}(X \times X)$ can be:

- reflexive: $E \subseteq R$,
- symmetric: $R = R^{-1}$,
- ullet --antisymmetric: $R\cap R^{-1}\subseteq E$,
- ·-transitive: $R \circ R \subseteq R$,
- a ·-partial order: ·-antisymmetric, reflexive, and ·-transitive,
- an ·-equivalence: symmetric, reflexive, and ·-transitive.

The last four terms depend on the choice of the fuzzy conjunction \wedge .

- ullet an equality: $E = \{(x, x) : x \in X\}$,
- reflexive: $\forall x \in X : (x, x) \in R$, i.e., $E \subseteq R$,
- symmetric: $(x,y) \in R \Rightarrow (y,x) \in R$, i.e., $R = R^{-1}$,

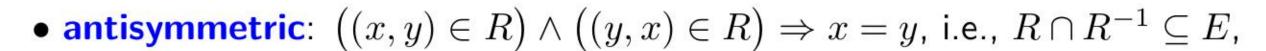


- transitive: $((x,y) \in R) \land ((y,z) \in R) \Rightarrow (x,z) \in R$, i.e., $R \circ R \subseteq R$,
- a partial order: antisymmetric, reflexive, and transitive,
- an equivalence: symmetric, reflexive, and transitive.

The membership function of the equality relation, $E \subseteq X \times X$, is the Kronecker delta:

$$\mu_E(x,y) = \delta(x,y) = \begin{cases} 1 & \text{for } x = y, \\ 0 & \text{for } x \neq y. \end{cases}$$

- ullet an equality: $E = \{(x, x) : x \in X\}$,
- reflexive: $\forall x \in X : (x, x) \in R$, i.e., $E \subseteq R$,
- symmetric: $(x,y) \in R \Rightarrow (y,x) \in R$, i.e., $R = R^{-1}$,

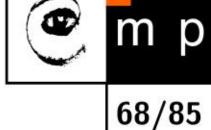


- transitive: $((x,y) \in R) \land ((y,z) \in R) \Rightarrow (x,z) \in R$, i.e., $R \circ R \subseteq R$,
- a partial order: antisymmetric, reflexive, and transitive,
- an equivalence: symmetric, reflexive, and transitive.

The membership function of the equality relation, $E \subseteq X \times X$, is the Kronecker delta:

$$\mu_E(x,y) = \delta(x,y) = \begin{cases} 1 & \text{for } x = y, \\ 0 & \text{for } x \neq y. \end{cases}$$

Special fuzzy relations



A fuzzy relation $R \in \mathcal{F}(X \times X)$ can be:

- reflexive: $E \subseteq R$,
- symmetric: $R = R^{-1}$,
- ullet --antisymmetric: $R\cap R^{-1}\subseteq E$,
- ·-transitive: $R \circ R \subseteq R$,
- a ·-partial order: ·-antisymmetric, reflexive, and ·-transitive,
- an ·-equivalence: symmetric, reflexive, and ·-transitive.

The last four terms depend on the choice of the fuzzy conjunction \wedge .

Special fuzzy relations



A fuzzy relation $R \in \mathcal{F}(X \times X)$ can be:

- reflexive: $E \subseteq R$,
- symmetric: $R = R^{-1}$,
- · -antisymmetric: $R \cap R^{-1} \subseteq E$,
- -transitive: $R \circ R \subseteq R$,
- a ·-partial order: ·-antisymmetric, reflexive, and ·-transitive,
- an ·-equivalence: symmetric, reflexive, and ·-transitive.

The last four terms depend on the choice of the fuzzy conjunction \wedge .

- reflexivity,
- symmetry,
- standard antisymmetry,
- product antisymmetry,
- standard transitivity,
- standard partial order,
- standard equivalence.

Theorem The following properties of fuzzy relations are cut-consistent:

- reflexivity,
- symmetry,
- standard antisymmetry,
- product antisymmetry,
- standard transitivity,
- standard partial order,

