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THEOREMS about
FUNCTIONALS (MEASURES) on
SETS
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THEOREMS about

FUZZY FUNCTIONALS (MEASURES) on
SETS
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[Butnariu, Klement]
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FUNCTIONALS (MEASURES) on
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THEOREMS about
FUNCTIONALS (MEASURES) on
FUZZY SETS

[Butnariu, Klement, Mesiar, Barbieri, Weber]

Also measure theory on MV-algebras [Cignoli, D'Ottaviano, Mundici, Rie¢an}
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Basic fuzzy logical operations

Standard negation, -z =1 — =«

Fuzzy conjunction (t-norm): T:[0,1]* — [0, 1] which is commutative,
associative, nondecreasing, and 7T'(a,1) = a

A t-norm 7' is strict iff it is continuous and
B>y > 0=Tlw2] =Ty 2

Fuzzy disjunction (t-conorm): S:[0,1]* — [0, 1] dual to T

5(z,y) = T(~z,y)
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classical measure theory

fuzzy measure theory

o-algebra 7 C 24

DeT
AeT=A'=X\AeT
A BeT=ANBeT

(An)neN C Tj A, /' A= AecT

tribe (7,7), where 7 C [0, 1]
0T
AeT=A"=1—-AcT

A BeT=ANBeT*

(A)nen C T, Ap /S A= AT

measure p: 7 — [0, 00|
u(®) =0

u(AU B)

= u(A) + pu(B) — p(AN B)
An /A= p(An) = p(A)

measure : 7 — [0, 00|

11(0) = 0

u(AU B)

= pu(A) +pn(B) — (AN B) *
A, /A= p(An) — p(A)

* (AN B)(x) = T(A(x), B(z)),

(AU B)(z) = S(A(z), B(z))
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A, A= M(An) — ;,L(A)

* (AN B)(x) = T(A(x), B(z)),

A%#’T

(AU B)(z) = S(A(z), B(z)
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classical measure theory fuzzy measure theory
o-algebra 7 C 2+ tribe (7,7T), where 7 C [0,1]*
DeT 07T
AeT=A'=X\AeT AeT=A'=1—-AecT
A BeT=ANBeT A BeT=ANBeT*
(Afn,)erEN . T: An /l A= AeT (Afn,)’n,EN C T: An /l A=AeT
measure [i: 7 — [0, 00| regular measure p: 7 — [0, 00|
(@) =0 p(0) =0
u(AU B) u(AU B)
= u(A) + u(B) — u(AnN B) = u(A) +pu(B) —p(ANB) *
An /A= p(An) — p(A) A, /A= p(An) — p(A)
An \ A = p(4,) — p(4) An \ A = p(An) — p(4)

Always: Crisp elements of 7, i.e., 7 N {0,1}*, determine a o-algebra 3
* (AN B)(z) =T(A(z),B(z)),  (AUB)(z) = S(A(z), B(z))
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Full tribes

Example: Let 5 be a o-algebra of subsets of X,
7T be the corresponding collection of characteristic functions (indicators):

T:{XA‘AEB}.

Then (7,7) is a tribe (for any t-norm 7).
It is called a Boolean tribe.
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(w.l.o.g., with a singleton domain)

may be identified with numbers from |0, 1.

It is called a full tribe of constants.
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Ti,(z,y) = max(z +y — 1,0)

These tribes correspond to set-representable o-complete MV-algebras
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