Fuzzy conjunction (triangular norm, t-norm)

20/85

binary operation $\Lambda\colon [0,1]^2 \to [0,1]$ such that, for all $\alpha,\beta,\gamma \in [0,1]$:

$$\alpha \wedge \beta = \beta \wedge \alpha \qquad \text{(commutativity)} \qquad \text{(T1)}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma \qquad \text{(associativity)} \qquad \text{(T2)}$$

$$\beta \leq \gamma \Rightarrow \alpha \wedge \beta \leq \alpha \wedge \gamma \qquad \text{(monotonicity)} \qquad \text{(T3)}$$

$$\alpha \wedge 1 = \alpha \qquad \text{(boundary condition)} \qquad \text{(T4)}$$

Fuzzy conjunction (triangular norm, t-norm)

20/85

binary operation $\Lambda \colon [0,1]^2 \to [0,1]$ such that, for all $\alpha,\beta,\gamma \in [0,1]$:

$$\alpha \wedge \beta = \beta \wedge \alpha \qquad \text{(commutativity)} \qquad \text{(T1)}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma \qquad \text{(associativity)} \qquad \text{(T2)}$$

$$\beta \leq \gamma \Rightarrow \alpha \wedge \beta \leq \alpha \wedge \gamma \qquad \text{(monotonicity)} \qquad \text{(T3)}$$

$$\alpha \wedge 1 = \alpha \qquad \text{(boundary condition)} \qquad \text{(T4)}$$

Proposition: $\alpha \wedge 0 = 0$.

Proof: Using (T3) and (T4): $\alpha \wedge 0 \stackrel{(T3)}{\leq} 1 \wedge 0 \stackrel{(T4)}{=} 0$.

Examples of fuzzy conjunctions

Standard conjunction (min, Gödel, Zadeh, . . .):

$$\alpha \wedge_{\mathbf{S}} \beta = \min(\alpha, \beta).$$

Product conjunction (probabilistic, Goguen, algebraic product, . . .):

$$\alpha \wedge \beta = \alpha \cdot \beta$$
.

Łukasiewicz conjunction (Giles, bold, . . .):

$$\alpha \underset{\mathbf{L}}{\wedge} \beta = \begin{cases} \alpha + \beta - 1 & \text{if } \alpha + \beta - 1 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Drastic conjunction (weak, . . .):

$$\alpha \underset{\mathbf{D}}{\wedge} \beta = \begin{cases} \alpha & \text{if } \beta = 1, \\ \beta & \text{if } \alpha = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Fuzzy conjunction (triangular norm, t-norm)

20/85

binary operation $\Lambda \colon [0,1]^2 \to [0,1]$ such that, for all $\alpha,\beta,\gamma \in [0,1]$:

$$\alpha \wedge \beta = \beta \wedge \alpha \qquad \text{(commutativity)} \qquad \text{(T1)}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma \qquad \text{(associativity)} \qquad \text{(T2)}$$

$$\beta \leq \gamma \Rightarrow \alpha \wedge \beta \leq \alpha \wedge \gamma \qquad \text{(monotonicity)} \qquad \text{(T3)}$$

$$\alpha \wedge 1 = \alpha \qquad \text{(boundary condition)} \qquad \text{(T4)}$$

Proposition: $\alpha \wedge 0 = 0$.

Proof: Using (T3) and (T4): $\alpha \wedge 0 \stackrel{(T3)}{\leq} 1 \wedge 0 \stackrel{(T4)}{=} 0$.

Examples of fuzzy conjunctions

Standard conjunction (min, Gödel, Zadeh, . . .):

$$\alpha \wedge_{\mathbf{S}} \beta = \min(\alpha, \beta).$$

Product conjunction (probabilistic, Goguen, algebraic product, . . .):

$$\alpha \wedge \beta = \alpha \cdot \beta$$
.

Łukasiewicz conjunction (Giles, bold, . . .):

$$\alpha \underset{\mathbf{L}}{\wedge} \beta = \begin{cases} \alpha + \beta - 1 & \text{if } \alpha + \beta - 1 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Drastic conjunction (weak, . . .):

$$\alpha \underset{\mathbf{D}}{\wedge} \beta = \begin{cases} \alpha & \text{if } \beta = 1, \\ \beta & \text{if } \alpha = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Basic fuzzy conjunctions

Łukasiewicz

drastic

Yager fuzzy conjunctions

$$\alpha \bigwedge_{\mathbf{Y_w}} \beta = \max \left(1 - \left((\alpha - 1)^w + (\beta - 1)^w \right)^{\frac{1}{w}}, 0 \right)$$

Hamacher fuzzy conjunctions

$$\alpha \bigwedge_{H_{r}} \beta = \frac{\alpha \beta}{r + (1 - r)(\alpha + \beta - \alpha \beta)}$$

Properties of fuzzy conjunctions

Proposition:

$$\forall \alpha, \beta \in [0,1]: \ \alpha \underset{\mathbf{D}}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Proof: If $\alpha = 1$ or $\beta = 1$, then (T4) gives the same result for all fuzzy conjunctions. Assume (without loss of generality) that $\alpha \leq \beta < 1$. Then

$$\alpha \underset{\mathbf{D}}{\wedge} \beta = 0 \le \alpha \underset{\cdot}{\wedge} \beta \le \alpha \underset{\cdot}{\wedge} 1 = \alpha = \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Properties of fuzzy conjunctions

26/85

Proposition: Standard conjunction is the only one which is idempotent, i.e.,

$$\forall \alpha \in [0,1] : \alpha \wedge \alpha = \alpha$$

Proof: Assume $\alpha, \beta \in [0, 1]$, $\alpha \leq \beta$.

$$\alpha = \alpha \wedge \alpha \stackrel{(T3)}{\leq} \alpha \wedge \beta \stackrel{(T3)}{\leq} \alpha \wedge 1 \stackrel{(T4)}{=} \alpha,$$

thus $\alpha \wedge \beta = \alpha = \alpha \wedge_{s} \beta$.

Analogously for $\alpha > \beta$.

Representation of fuzzy conjunctions (in general)

27/85

Theorem: Let \bigwedge_1 be a fuzzy conjunction and $i:[0,1]\to [0,1]$ be an increasing bijection. Then the operation $\bigwedge_2:[0,1]^2\to [0,1]$ defined by

$$\alpha \wedge \beta = i^{-1} (i(\alpha) \wedge i(\beta))$$

is a fuzzy conjunction. If \bigwedge_1 is continuous, so is \bigwedge_2 .

Proof:

• Commutativity (analogously for associativity):

$$\alpha \wedge_{2} \beta = i^{-1}(i(\alpha) \wedge_{1} i(\beta)) = i^{-1}(i(\beta) \wedge_{1} i(\alpha)) = \beta \wedge_{2} \alpha$$

• Monotonicity: Assume $\beta \leq \gamma$.

$$\begin{split} i(\beta) & \leq & i(\gamma), \\ i(\alpha) & \underset{1}{\wedge} i(\beta) & \leq & i(\alpha) \underset{1}{\wedge} i(\gamma), \\ \\ \alpha & \underset{2}{\wedge} \beta = i^{-1}(i(\alpha) \underset{1}{\wedge} i(\beta)) & \leq & i^{-1}(i(\alpha) \underset{1}{\wedge} i(\gamma)) = \alpha \underset{2}{\wedge} \gamma. \end{split}$$

$$\alpha \wedge 1 = i^{-1}(i(\alpha) \wedge i(1)) = i^{-1}(i(\alpha) \wedge 1) = i^{-1}(i(\alpha)) = \alpha.$$

Continuity: It is a composition of continuous functions.

$$\alpha \wedge 1 = i^{-1}(i(\alpha) \wedge i(1)) = i^{-1}(i(\alpha) \wedge 1) = i^{-1}(i(\alpha) \wedge 1) = i^{-1}(i(\alpha)) = \alpha.$$

Continuity: It is a composition of continuous functions.

29/85

Definition: We define a binary relation ≈ on fuzzy conjunctions such that

29/85

Definition: We define a binary relation ≈ on fuzzy conjunctions such that

Proposition: Relation \approx is an equivalence.

29/85

Definition: We define a binary relation ≈ on fuzzy conjunctions such that

Proposition: Relation \approx is an equivalence.

Proof:

Reflexivity: Take the identity for *i*.

29/85

Definition: We define a binary relation ≈ on fuzzy conjunctions such that

Proposition: Relation \approx is an equivalence.

Proof:

Reflexivity: Take the identity for *i*.

Symmetry: Take i^{-1} , $\alpha \wedge \beta = i (i^{-1}(\alpha) \wedge i^{-1}(\beta))$.

Definition: We define a binary relation ≈ on fuzzy conjunctions such that

Proposition: Relation \approx is an equivalence.

Proof:

Reflexivity: Take the identity for i.

Symmetry: Take i^{-1} , $\alpha \wedge \beta = i (i^{-1}(\alpha) \wedge i^{-1}(\beta))$.

Transitivity: For $\alpha \wedge \beta = i_1^{-1} \big(i_1(\alpha) \wedge i_1(\beta) \big)$, $\alpha \wedge \beta = i_2^{-1} \big(i_2(\alpha) \wedge i_2(\beta) \big)$, take the composition $i_3 = i_1 \circ i_2$, $\alpha \wedge \beta = i_3^{-1} \big(i_3(\alpha) \wedge i_3(\beta) \big)$.

Definition: We define a binary relation ≈ on fuzzy conjunctions such that

Proposition: Relation \approx is an equivalence.

Proof:

Reflexivity: Take the identity for *i*.

Symmetry: Take i^{-1} , $\alpha \wedge \beta = i(i^{-1}(\alpha) \wedge i^{-1}(\beta))$.

Transitivity: For $\alpha \wedge \beta = i_1^{-1} (i_1(\alpha) \wedge i_1(\beta))$, $\alpha \wedge \beta = i_2^{-1} (i_2(\alpha) \wedge i_2(\beta))$, take the composition $i_3=i_1\circ i_2$, $\alpha \wedge \beta=i_3^{-1}\big(i_3(\alpha)\wedge i_3(\beta)\big)$.

We denote by $[\land]$ the class of equivalence \approx containing \land .

30/85

Proof: WLOG: $\alpha \leq \beta$.

30/85

Proof: WLOG: $\alpha \leq \beta$.

$$i(\alpha) \le i(\beta),$$

$$i^{-1} (i(\alpha) \land i(\beta)) = i^{-1} (i(\alpha)) = \alpha = \alpha \land \beta.$$

30/8

Proof: WLOG: $\alpha \leq \beta$.

$$i(\alpha) \le i(\beta),$$

$$i^{-1} (i(\alpha) \land i(\beta)) = i^{-1} (i(\alpha)) = \alpha = \alpha \land \beta.$$

30/8

Proof: WLOG: $\alpha \leq \beta$.

$$i(\alpha) \le i(\beta),$$

$$i^{-1} (i(\alpha) \underset{S}{\wedge} i(\beta)) = i^{-1} (i(\alpha)) = \alpha = \alpha \underset{S}{\wedge} \beta.$$

30/85

Proof: WLOG: $\alpha \leq \beta$.

$$i(\alpha) \le i(\beta),$$

$$i^{-1} (i(\alpha) \underset{S}{\wedge} i(\beta)) = i^{-1} (i(\alpha)) = \alpha = \alpha \underset{S}{\wedge} \beta.$$

Proposition: The set of all continuous fuzzy conjunctions is closed under \approx .

Classification of fuzzy conjunctions

31/85

Continuous fuzzy conjunction ∧ is

Archimedean if

$$\forall \alpha \in (0,1): \ \alpha \wedge \alpha < \alpha \tag{TA}$$

• strict if

$$\forall \alpha \in (0,1] \ \forall \beta, \gamma \in [0,1]: \ \beta < \gamma \Rightarrow \alpha \land \beta < \alpha \land \gamma$$
 (T3+)

• nilpotent if it is Archimedean and not strict.

Classification of fuzzy conjunctions

31/85

Continuous fuzzy conjunction ∧ is

Archimedean if

$$\forall \alpha \in (0,1): \ \alpha \wedge \alpha < \alpha \tag{TA}$$

strict if

$$\forall \alpha \in (0,1] \ \forall \beta, \gamma \in [0,1]: \ \beta < \gamma \Rightarrow \alpha \land \beta < \alpha \land \gamma$$
 is Archimedean and not strict.
 (T3+)

nilpotent if it is Archimedean and not strict.

Classification of fuzzy conjunctions

Continuous fuzzy conjunction ∧ is

Archimedean if

$$\forall \alpha \in (0,1): \ \alpha \wedge \alpha < \alpha \tag{TA}$$

• strict if

$$\forall \alpha \in (0,1] \ \forall \beta, \gamma \in [0,1]: \ \beta < \gamma \Rightarrow \alpha \land \beta < \alpha \land \gamma$$
 (T3+)

nilpotent if it is Archimedean and not strict.

Example: Product conjunction is strict, Łukasiewicz conjunction is nilpotent, standard and drastic conjunctions are not Archimedean (the standard one violates (TA), the drastic one is not continuous).

Proposition: The set of all Archimedean conjunctions is closed under the equivalence \approx .

32/85

Proposition: The set of all Archimedean conjunctions is closed under the equivalence \approx .

Proof: Assume \bigwedge_1 Archimedean, $\alpha \bigwedge_2 \beta = i^{-1} (i(\alpha) \bigwedge_1 i(\beta))$, $\alpha > 0$.

32/85

Proposition: The set of all Archimedean conjunctions is closed under the equivalence \approx .

Proof: Assume \bigwedge_1 Archimedean, $\alpha \bigwedge_2 \beta = i^{-1} \big(i(\alpha) \bigwedge_1 i(\beta) \big)$, $\alpha > 0$.

$$\begin{aligned} \alpha & \bigwedge_1 \alpha < \alpha \,, & | \alpha := i(\gamma) \\ i(\gamma) & \bigwedge_1 i(\gamma) < i(\gamma) \,, & | i^{-1} \\ i^{-1} \big(i(\gamma) & \bigwedge_1 i(\gamma) \big) < i^{-1} \big(i(\gamma) \big) \,, & \\ \gamma & \bigwedge_2 \gamma < \gamma \,. & \end{aligned}$$

32/85

Proposition: The set of all Archimedean conjunctions is closed under the equivalence \approx .

Proof: Assume \bigwedge_1 Archimedean, $\alpha \bigwedge_2 \beta = i^{-1} (i(\alpha) \bigwedge_1 i(\beta))$, $\alpha > 0$.

$$\alpha \wedge \alpha < \alpha, \qquad | \alpha := i(\gamma)$$

$$i(\gamma) \wedge i(\gamma) < i(\gamma), \qquad | i^{-1}$$

$$i^{-1}(i(\gamma) \wedge i(\gamma)) < i^{-1}(i(\gamma)), \qquad | i^{-1}$$

$$\gamma \wedge \gamma < \gamma.$$

33/85

Proposition: The class $\left[\bigwedge_{P} \right]$ contains only strict conjunctions.

Proof:

$$\begin{aligned} 0 < \alpha \,, & \beta < \gamma \,, \\ 0 < i(\alpha) \,, & i(\beta) < i(\gamma) \,, \\ & i(\alpha) & \wedge i(\beta) < i(\alpha) & \wedge i(\gamma) \,, \\ & \alpha \wedge \beta = i^{-1} \big(i(\alpha) & \wedge i(\beta) \big) < i^{-1} \big(i(\alpha) & \wedge i(\gamma) \big) = \alpha \wedge \gamma \,. \end{aligned}$$

Representation theorem for strict fuzzy conjunctions

Operation $\wedge: [0,1]^2 \to [0,1]$ is a strict fuzzy conjunction iff there is an increasing bijection $i: [0,1] \to [0,1]$ (multiplicative generator) such that

$$\alpha \wedge \beta = i^{-1} (i(\alpha) \wedge i(\beta)) = i^{-1} (i(\alpha) \cdot i(\beta)).$$

Sufficiency has been already proved.

The proof of necessity is much more advanced.

A multiplicative generator of a strict fuzzy conjunction is not unique.

Representation theorem for strict fuzzy conjunctions

Operation $\wedge: [0,1]^2 \to [0,1]$ is a strict fuzzy conjunction iff there is an increasing bijection $i: [0,1] \to [0,1]$ (multiplicative generator) such that

$$\alpha \wedge \beta = i^{-1} (i(\alpha) \wedge i(\beta)) = i^{-1} (i(\alpha) \cdot i(\beta)).$$

Sufficiency has been already proved.

The proof of necessity is much more advanced.

A multiplicative generator of a strict fuzzy conjunction is not unique.