

1. Completeness:
$$\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$$
, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.

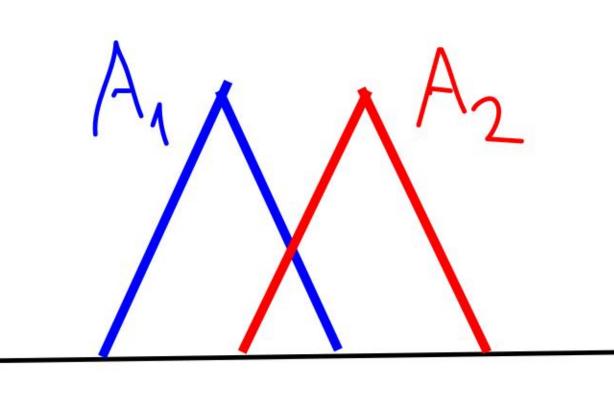
- 1. Completeness: $\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).

- 1. Completeness: $\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually $(A_i \cap A_i \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$.

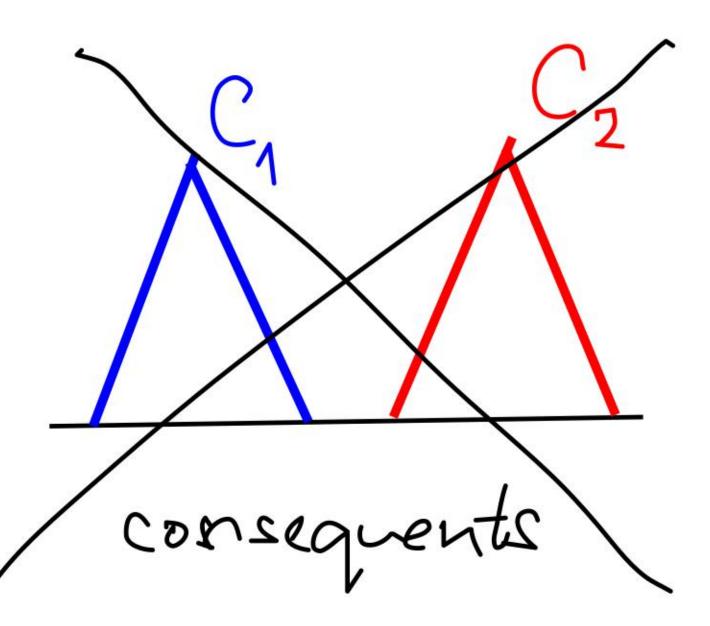
32/75

- 1. Completeness: $\bigcup_{i} \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually

$$(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$$
.



antecedents



m p

Requirements on the rule base [Driankov et al. 1993]

32/75

- 1. Completeness: $\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually $(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$.
- 4. Interaction or (local) correctness ([Thiele 1995]): $\forall j: \Phi(A_j) = C_j$.

The output of the controller should be the fuzzy union of the outputs of separate rules (i.e., FATI=FITA);

this weaker form always holds for a Mamdani–Assilian controller; see also [Lehmke, Reusch, Temme, Thiele 1998] for more general sufficient conditions for this equality).

X-----

Recommendations on the rule base [Driankov et al. 1993]

33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

:

m p

Requirements on the rule base [Driankov et al. 1993]

32/75

- 1. Completeness: $\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually $(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$.
- 4. Interaction or (local) correctness ([Thiele 1995]): $\forall j: \Phi(A_j) = C_j$.

The output of the controller should be the fuzzy union of the outputs of separate rules (i.e., FATI=FITA);

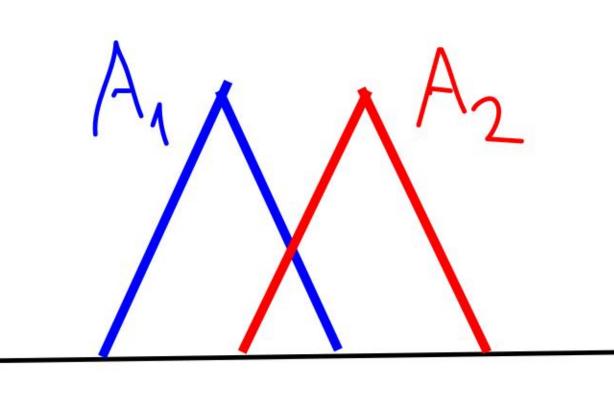
this weaker form always holds for a Mamdani–Assilian controller; see also [Lehmke, Reusch, Temme, Thiele 1998] for more general sufficient conditions for this equality).

X-----

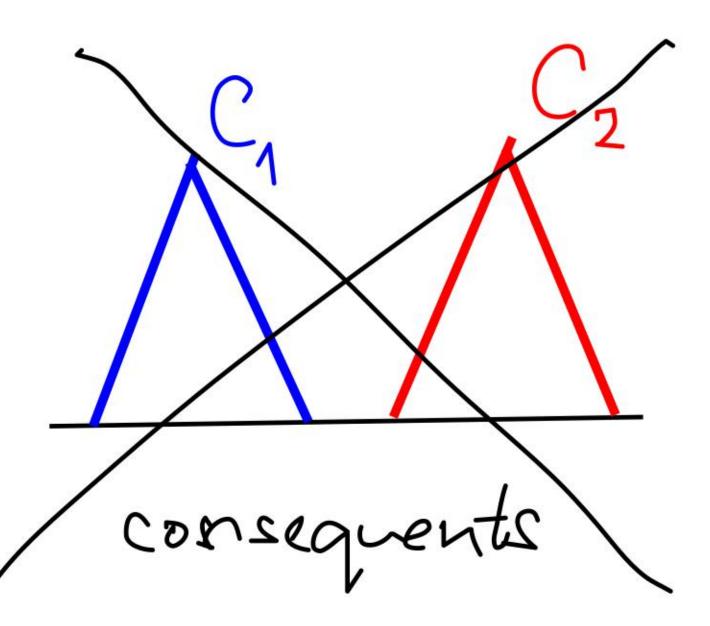
32/75

- 1. Completeness: $\bigcup_{i} \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually

$$(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$$
.



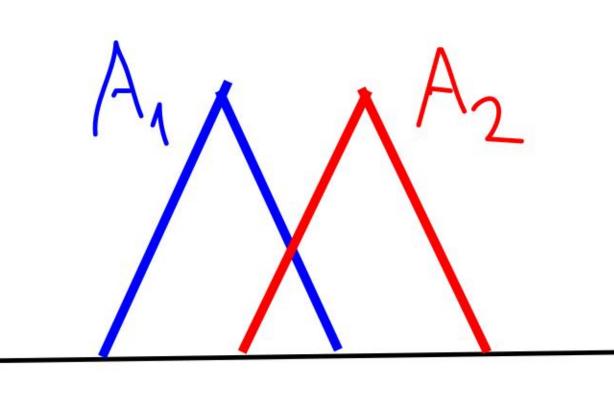
antecedents



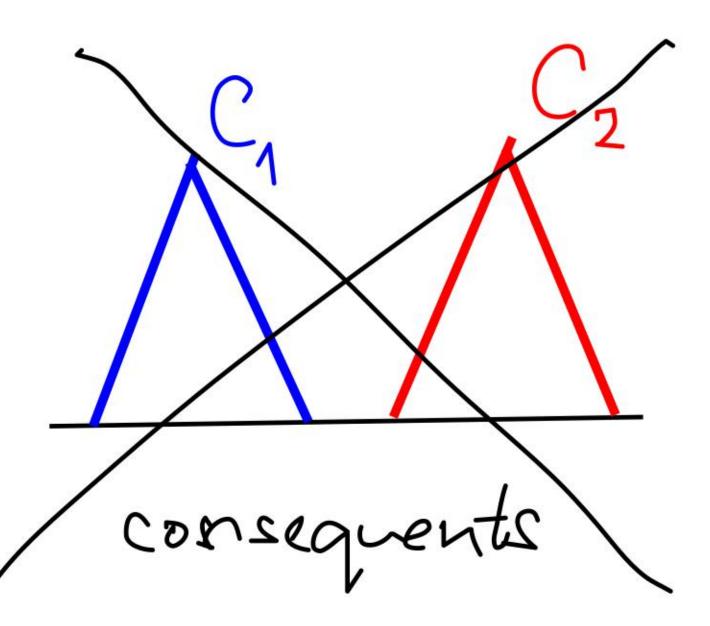
32/75

- 1. Completeness: $\bigcup_{i} \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually

$$(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$$
.



antecedents



- 1. Completeness: $\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).

1. Completeness:
$$\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$$
, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.

m p

Generalized Compositional Rule of Inference 2

31/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FITA principle (First Inference, Then Aggregation)

$$R_{\mathsf{FITA}i}(x,y) = \pi_i \big(A_i(x), C_i(y) \big),$$

where $\pi_i : [0,1]^2 \to [0,1]$.

$$\Phi_{\mathsf{FITA}i}(X)(y) = Q_i \left\{ \kappa_i \big(X(x), R_{\mathsf{FITA}i}(x, y) \big) \mid x \in \mathcal{X} \right\},\,$$

where $\kappa_i : [0,1]^2 \to [0,1], \quad Q_i : \mathcal{P}([0,1]) \to [0,1].$

$$Y(y) = \Phi_{\mathsf{FITA}}(X)(y) = \alpha \left(\Phi_{\mathsf{FITA}1}(X)(y), \dots, \Phi_{\mathsf{FITA}n}(X)(y) \right),$$

where $\alpha : [0,1]^n \to [0,1].$

Particular cases:

FITA Mamdani–Assilian controller: $\pi_i = \wedge, \quad \kappa_i = \wedge, \quad Q_i = \sup, \quad \alpha = \max.$

FITA Residuum-based controller: $\pi_i = \rightarrow$, $\kappa_i = \land$, $Q_i = \sup$, $\alpha = \min$.

m p

Generalized Compositional Rule of Inference 2

31/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FITA principle (First Inference, Then Aggregation)

$$R_{\mathsf{FITA}i}(x,y) = \pi_i \big(A_i(x), C_i(y) \big),$$

where $\pi_i : [0,1]^2 \to [0,1]$.

$$\Phi_{\mathsf{FITA}i}(X)(y) = Q_i \left\{ \kappa_i \big(X(x), R_{\mathsf{FITA}i}(x, y) \big) \mid x \in \mathcal{X} \right\},\,$$

where $\kappa_i : [0,1]^2 \to [0,1]$, $Q_i : \mathcal{P}([0,1]) \to [0,1]$.

$$Y(y) = \Phi_{\mathsf{FITA}}(X)(y) = \alpha \left(\Phi_{\mathsf{FITA}1}(X)(y), \dots, \Phi_{\mathsf{FITA}n}(X)(y) \right),$$

where $\alpha : [0,1]^n \to [0,1].$

Particular cases:

FITA Mamdani-Assilian controller: $\pi_i = \wedge, \quad \kappa_i = \wedge, \quad Q_i = \sup, \quad \alpha = \max.$

31/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FITA principle (First Inference, Then Aggregation)

$$R_{\mathsf{FITA}i}(x,y) = \pi_i \big(A_i(x), C_i(y) \big),$$

where $\pi_i : [0,1]^2 \to [0,1]$.

$$\Phi_{\mathsf{FITA}i}(X)(y) = Q_i \left\{ \kappa_i \big(X(x), R_{\mathsf{FITA}i}(x, y) \big) \mid x \in \mathcal{X} \right\},\,$$

where $\kappa_i \colon [0,1]^2 \to [0,1]$, $Q_i \colon \mathcal{P}([0,1]) \to [0,1]$.

$$Y(y) = \Phi_{\mathsf{FITA}}(X)(y) = \alpha \left(\Phi_{\mathsf{FITA}1}(X)(y), \dots, \Phi_{\mathsf{FITA}n}(X)(y) \right),$$

where $\alpha : [0,1]^n \to [0,1].$

30/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FATI principle (First Aggregation, Then Inference)

$$R_{\text{FATI}}(x,y) = \beta(\pi_1(A_1(x), C_1(y)), \dots, \pi_n(A_n(x), C_n(y))),$$

where $\pi_i \colon [0,1]^2 \to [0,1], \quad \beta \colon [0,1]^n \to [0,1].$

$$Y(y) = \Phi_{\text{FATI}}(X)(y) = Q\{\kappa(X(x), R_{\text{FATI}}(x, y)) \mid x \in \mathcal{X}\},\$$

where $\kappa \colon [0,1]^2 \to [0,1]$, $Q \colon \mathcal{P}([0,1]) \to [0,1]$ (almost arbitrary operations).

Particular cases:

Mamdani-Assilian controller: $\pi_i = \wedge$, $\beta = \max$, $\kappa = \wedge$, $Q = \sup$.

Residuum-based controller: $\pi_i = \rightarrow, \quad \beta = \min, \quad \kappa = \wedge, \quad Q = \sup.$

30/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FATI principle (First Aggregation, Then Inference)

$$R_{\text{FATI}}(x,y) = \beta (\pi_1(A_1(x), C_1(y)), \dots, \pi_n(A_n(x), C_n(y))),$$

where $\pi_i \colon [0,1]^2 \to [0,1], \quad \beta \colon [0,1]^n \to [0,1].$

$$Y(y) = \Phi_{\text{FATI}}(X)(y) = Q\{\kappa(X(x), R_{\text{FATI}}(x, y)) \mid x \in \mathcal{X}\},\$$

where $\kappa \colon [0,1]^2 \to [0,1]$, $Q \colon \mathcal{P}([0,1]) \to [0,1]$ (almost arbitrary operations).

Particular cases:

Mamdani-Assilian controller: $\pi_i = \wedge, \quad \beta = \max, \quad \kappa = \wedge, \quad Q = \sup.$

30/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FATI principle (First Aggregation, Then Inference)

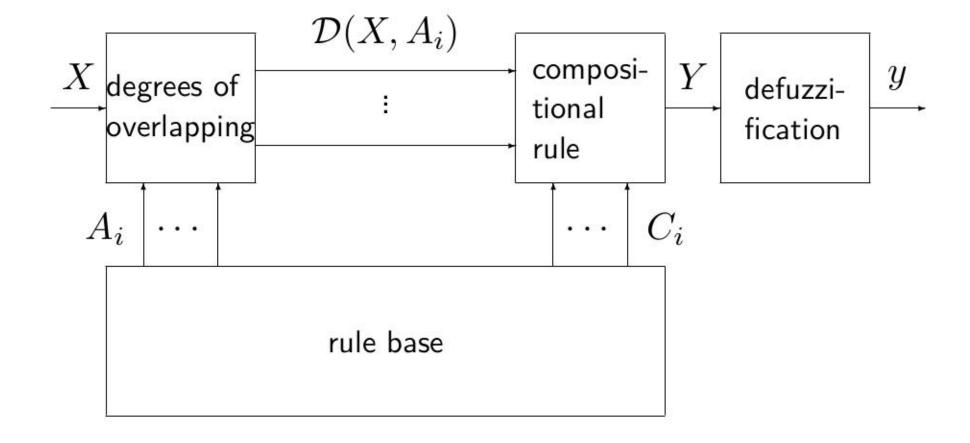
$$R_{\text{FATI}}(x,y) = \beta \big(\pi_1 \big(A_1(x), C_1(y) \big), \dots, \pi_n \big(A_n(x), C_n(y) \big) \big),$$

where $\pi_i : [0,1]^2 \to [0,1], \quad \beta : [0,1]^n \to [0,1].$

$$Y(y) = \Phi_{\text{FATI}}(X)(y) = Q\{\kappa(X(x), R_{\text{FATI}}(x, y)) \mid x \in \mathcal{X}\},\$$

where $\kappa \colon [0,1]^2 \to [0,1]$, $Q \colon \mathcal{P}([0,1]) \to [0,1]$ (almost arbitrary operations).

Principle of Mamdani–Assilian controller — block diagram



28/75

Comparison of residuum-based and Mamdani–Assilian controllers

Continuity:

 R_{RES} only for \wedge nilpotent,

 R_{MA} always.

Computational efficiency:

$$\Phi_{\mathsf{RES}}(X)(y) = \sup_{x} \Big(X(x) \wedge \min_{i} (A_i(x) \to C_i(y)) \Big)$$

requires three nested cycles (over \mathcal{X} and \mathcal{Y} and over the number of rules).

$$\Phi_{MA}(X)(y) = \sup_{x} \left(X(x) \wedge \max_{i} (A_{i}(x) \wedge C_{i}(y)) \right)$$
$$= \max_{i} \sup_{x} \left(X(x) \wedge A_{i}(x) \wedge C_{i}(y) \right)$$
$$= \max_{i} (\mathcal{D}(X, A_{i}) \wedge C_{i}(y)).$$

 $\mathcal{D}(X,A_i) = \sup_x (X(x) \wedge A_i(x))$... the degree of overlapping (non-disjointness), here equal to the degree of firing (applicability).

Tequires two nested cycles (over \mathcal{X} and the number of rules) resulting in real numbers $\mathcal{D}(X, A_i)$, i = 1, ..., n; then two nested cycles (over \mathcal{Y} and the number of rules).

 Φ_{MA} can be computed more efficiently (approx. #Y/2-times faster).

28/75

Comparison of residuum-based and Mamdani–Assilian controllers

Continuity:

 R_{RES} only for \wedge nilpotent,

 R_{MA} always.

Computational efficiency:

$$\Phi_{\mathsf{RES}}(X)(y) = \sup_{x} \Big(X(x) \wedge \min_{i} (A_{i}(x) \to C_{i}(y)) \Big)$$

requires three nested cycles (over \mathcal{X} and \mathcal{Y} and over the number of rules).

$$\Phi_{MA}(X)(y) = \sup_{x} \Big(X(x) \wedge \max_{i} (A_{i}(x) \wedge C_{i}(y)) \Big)$$

$$= \max_{i} \sup_{x} \Big(X(x) \wedge A_{i}(x) \wedge C_{i}(y) \Big)$$

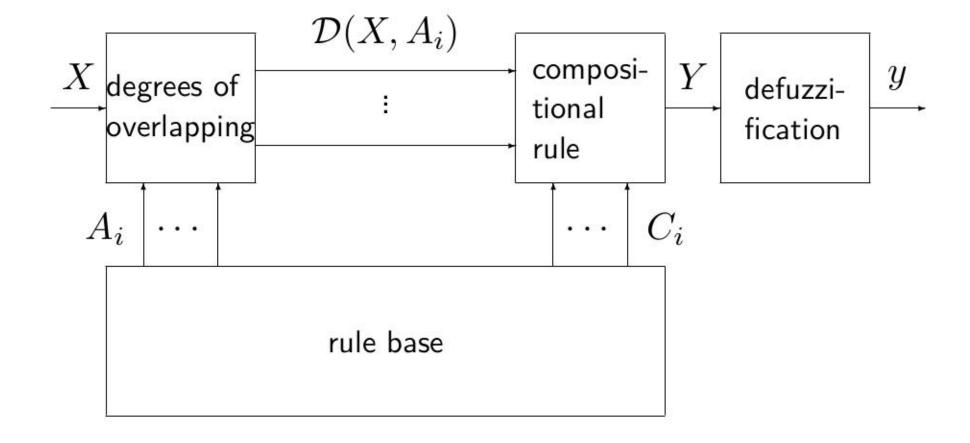
$$= \max_{i} (\mathcal{D}(X, A_{i}) \wedge C_{i}(y)).$$

 $\mathcal{D}(X, A_i) = \sup_{x} (X(x) \wedge A_i(x))$... the degree of overlapping (non-disjointness), here equal to the degree of firing (applicability).

Tequires two nested cycles (over \mathcal{X} and the number of rules) resulting in real numbers $\mathcal{D}(X, A_i)$, i = 1, ..., n; then two nested cycles (over \mathcal{Y} and the number of rules).

 Φ_{MA} can be computed more efficiently (approx. #Y/2-times faster).

Principle of Mamdani–Assilian controller — block diagram



30/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FATI principle (First Aggregation, Then Inference)

$$R_{\text{FATI}}(x,y) = \beta \big(\pi_1 \big(A_1(x), C_1(y) \big), \dots, \pi_n \big(A_n(x), C_n(y) \big) \big),$$

where $\pi_i : [0,1]^2 \to [0,1], \quad \beta : [0,1]^n \to [0,1].$

$$Y(y) = \Phi_{\text{FATI}}(X)(y) = Q\{\kappa(X(x), R_{\text{FATI}}(x, y)) \mid x \in \mathcal{X}\},\$$

where $\kappa \colon [0,1]^2 \to [0,1]$, $Q \colon \mathcal{P}([0,1]) \to [0,1]$ (almost arbitrary operations).

30/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FATI principle (First Aggregation, Then Inference)

$$R_{\text{FATI}}(x,y) = \beta (\pi_1(A_1(x), C_1(y)), \dots, \pi_n(A_n(x), C_n(y))),$$

where $\pi_i \colon [0,1]^2 \to [0,1], \quad \beta \colon [0,1]^n \to [0,1].$

$$Y(y) = \Phi_{\text{FATI}}(X)(y) = Q\{\kappa(X(x), R_{\text{FATI}}(x, y)) \mid x \in \mathcal{X}\},\$$

where $\kappa \colon [0,1]^2 \to [0,1]$, $Q \colon \mathcal{P}([0,1]) \to [0,1]$ (almost arbitrary operations).

Particular cases:

Mamdani-Assilian controller: $\pi_i = \wedge, \quad \beta = \max, \quad \kappa = \wedge, \quad Q = \sup.$

30/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FATI principle (First Aggregation, Then Inference)

$$R_{\text{FATI}}(x,y) = \beta(\pi_1(A_1(x), C_1(y)), \dots, \pi_n(A_n(x), C_n(y))),$$

where $\pi_i \colon [0,1]^2 \to [0,1], \quad \beta \colon [0,1]^n \to [0,1].$

$$Y(y) = \Phi_{\text{FATI}}(X)(y) = Q\{\kappa(X(x), R_{\text{FATI}}(x, y)) \mid x \in \mathcal{X}\},\$$

where $\kappa \colon [0,1]^2 \to [0,1]$, $Q \colon \mathcal{P}([0,1]) \to [0,1]$ (almost arbitrary operations).

Particular cases:

Mamdani-Assilian controller: $\pi_i = \wedge$, $\beta = \max$, $\kappa = \wedge$, $Q = \sup$.

Residuum-based controller: $\pi_i = \rightarrow, \quad \beta = \min, \quad \kappa = \wedge, \quad Q = \sup.$

31/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FITA principle (First Inference, Then Aggregation)

$$R_{\mathsf{FITA}i}(x,y) = \pi_i \big(A_i(x), C_i(y) \big),$$

where $\pi_i : [0,1]^2 \to [0,1]$.

$$\Phi_{\mathsf{FITA}i}(X)(y) = Q_i \left\{ \kappa_i \big(X(x), R_{\mathsf{FITA}i}(x, y) \big) \mid x \in \mathcal{X} \right\},\,$$

where $\kappa_i \colon [0,1]^2 \to [0,1]$, $Q_i \colon \mathcal{P}([0,1]) \to [0,1]$.

$$Y(y) = \Phi_{\mathsf{FITA}}(X)(y) = \alpha \left(\Phi_{\mathsf{FITA}1}(X)(y), \dots, \Phi_{\mathsf{FITA}n}(X)(y) \right),$$

where $\alpha : [0,1]^n \to [0,1].$

m p

Generalized Compositional Rule of Inference 2

31/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FITA principle (First Inference, Then Aggregation)

$$R_{\mathsf{FITA}i}(x,y) = \pi_i \big(A_i(x), C_i(y) \big),$$

where $\pi_i : [0,1]^2 \to [0,1]$.

$$\Phi_{\mathsf{FITA}i}(X)(y) = Q_i \left\{ \kappa_i \big(X(x), R_{\mathsf{FITA}i}(x, y) \big) \mid x \in \mathcal{X} \right\},\,$$

where $\kappa_i : [0,1]^2 \to [0,1]$, $Q_i : \mathcal{P}([0,1]) \to [0,1]$.

$$Y(y) = \Phi_{\mathsf{FITA}}(X)(y) = \alpha \left(\Phi_{\mathsf{FITA}1}(X)(y), \dots, \Phi_{\mathsf{FITA}n}(X)(y) \right),$$

where $\alpha : [0,1]^n \to [0,1].$

Particular cases:

FITA Mamdani-Assilian controller: $\pi_i = \wedge, \quad \kappa_i = \wedge, \quad Q_i = \sup, \quad \alpha = \max.$

e m p

Generalized Compositional Rule of Inference 2

31/75

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998] FITA principle (First Inference, Then Aggregation)

$$R_{\mathsf{FITA}i}(x,y) = \pi_i \big(A_i(x), C_i(y) \big),$$

where $\pi_i : [0,1]^2 \to [0,1]$.

$$\Phi_{\mathsf{FITA}i}(X)(y) = Q_i \left\{ \kappa_i \big(X(x), R_{\mathsf{FITA}i}(x, y) \big) \mid x \in \mathcal{X} \right\},\,$$

where $\kappa_i : [0,1]^2 \to [0,1], \quad Q_i : \mathcal{P}([0,1]) \to [0,1].$

$$Y(y) = \Phi_{\mathsf{FITA}}(X)(y) = \alpha \left(\Phi_{\mathsf{FITA}1}(X)(y), \dots, \Phi_{\mathsf{FITA}n}(X)(y) \right),$$

where $\alpha : [0,1]^n \to [0,1].$

Particular cases:

FITA Mamdani–Assilian controller: $\pi_i = \wedge, \quad \kappa_i = \wedge, \quad Q_i = \sup, \quad \alpha = \max.$

FITA Residuum-based controller: $\pi_i = \rightarrow$, $\kappa_i = \land$, $Q_i = \sup$, $\alpha = \min$.

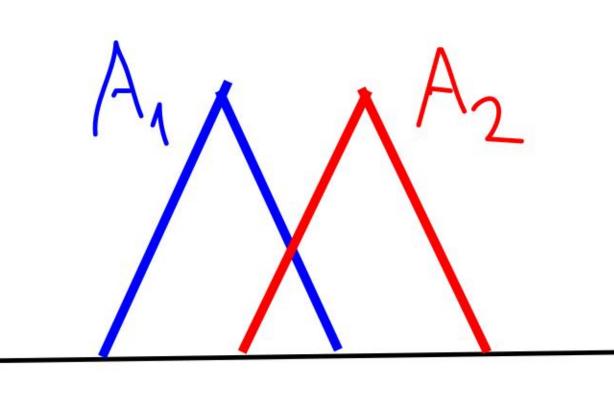
1. Completeness:
$$\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$$
, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.

- 1. Completeness: $\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).

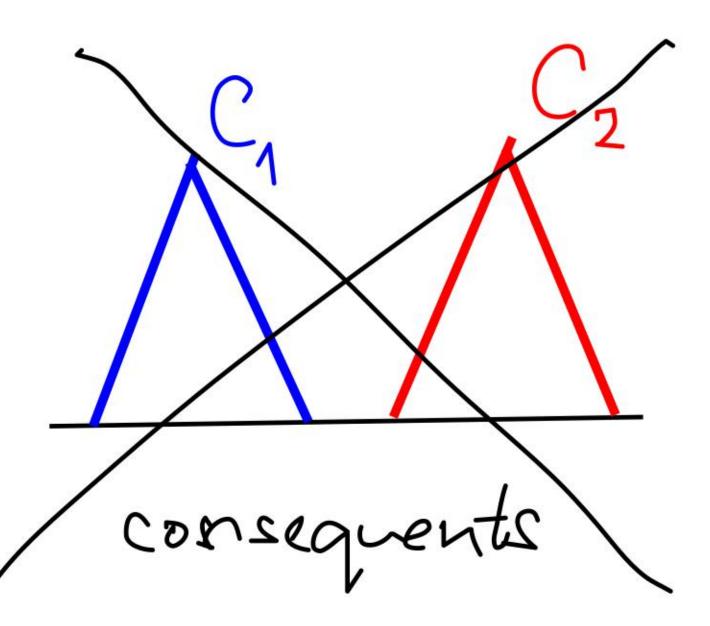
32/75

- 1. Completeness: $\bigcup_{i} \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually

$$(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$$
.



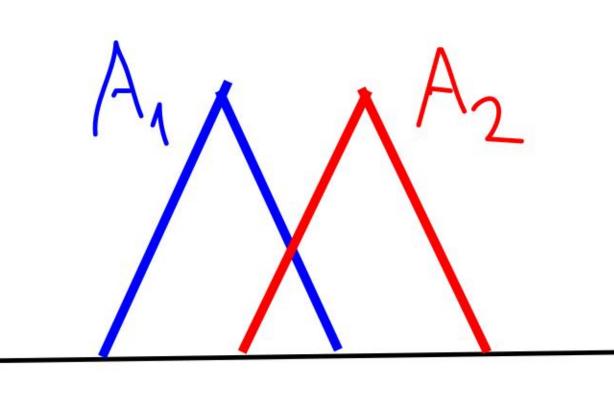
antecedents



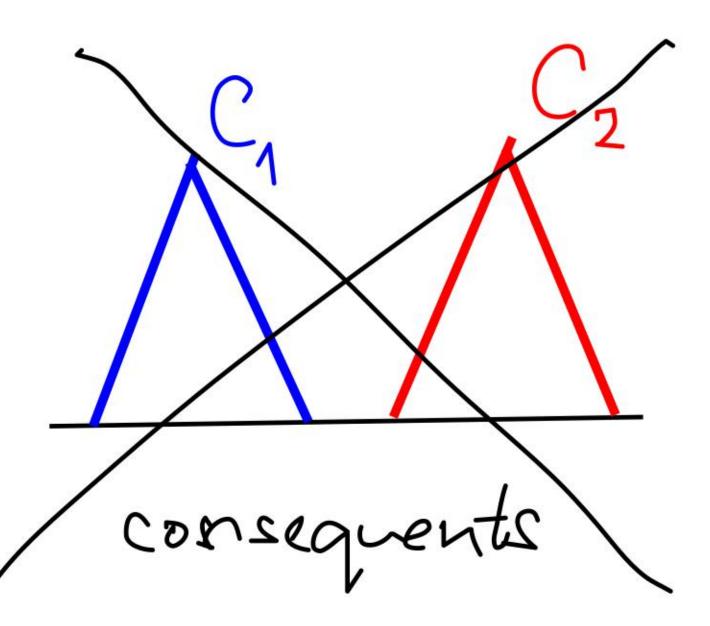
32/75

- 1. Completeness: $\bigcup_{i} \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually

$$(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$$
.



antecedents



m p

Requirements on the rule base [Driankov et al. 1993]

32/75

- 1. Completeness: $\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually $(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$.
- 4. Interaction or (local) correctness ([Thiele 1995]): $\forall j: \Phi(A_j) = C_j$.

The output of the controller should be the fuzzy union of the outputs of separate rules (i.e., FATI=FITA);

this weaker form always holds for a Mamdani–Assilian controller; see also [Lehmke, Reusch, Temme, Thiele 1998] for more general sufficient conditions for this equality).

X-----

Recommendations on the rule base [Driankov et al. 1993]

33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

:

m

Recommendations on the rule base [Driankov et al. 1993]

33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

 $\frac{1}{2}$

Requirements on the rule base [Moser, Navara 2002]

34/75

• Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.

m p

Recommendations on the rule base [Driankov et al. 1993]

33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

 $\frac{1}{2}$

m p

Recommendations on the rule base [Driankov et al. 1993]

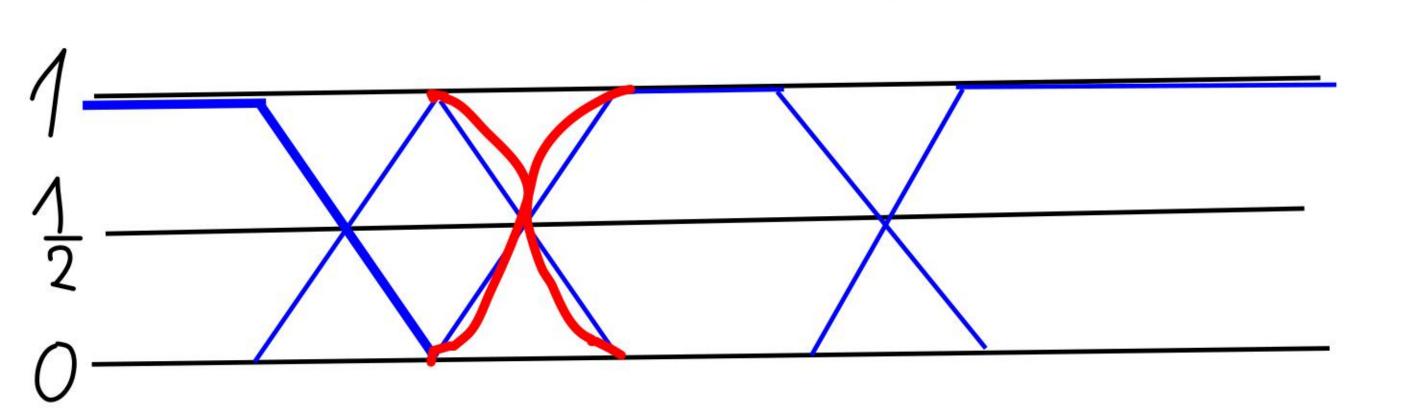
33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.



34/75

• Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.

- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).

34/75

• Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.

m p

Recommendations on the rule base [Driankov et al. 1993]

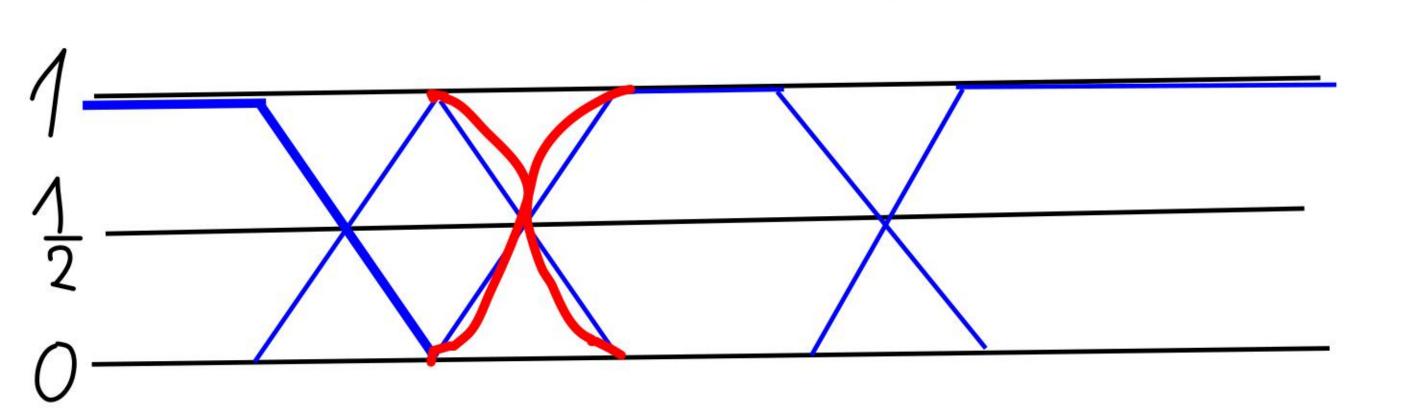
33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.



m p

Recommendations on the rule base [Driankov et al. 1993]

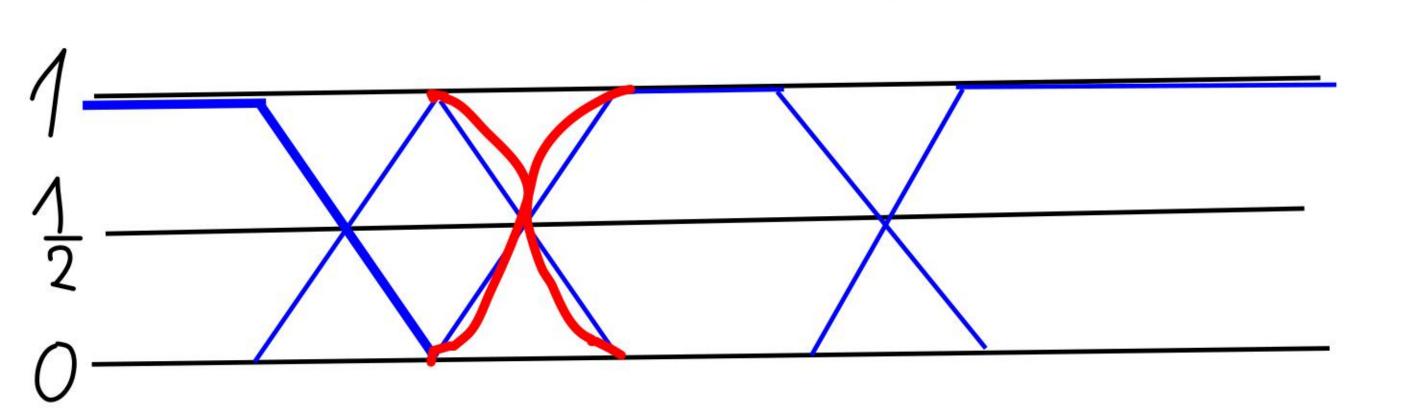
33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

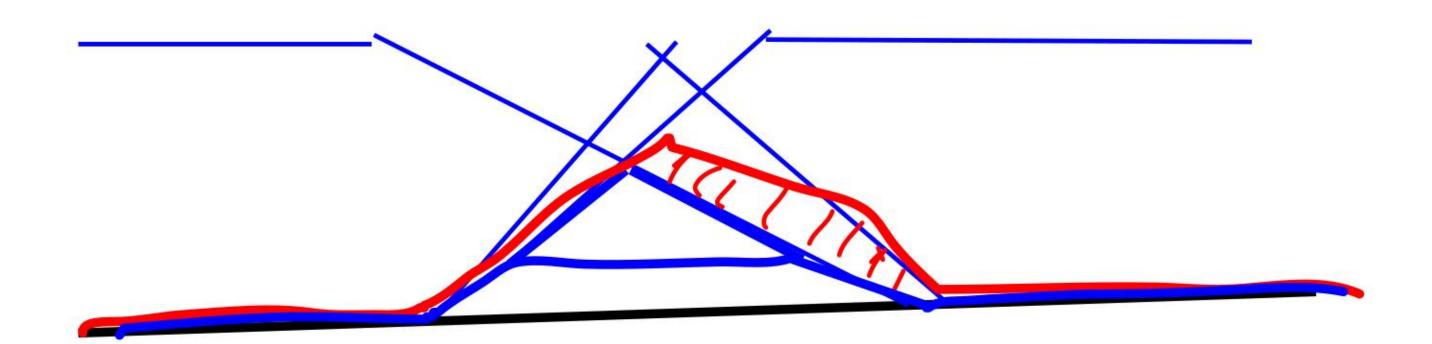


34/75

• Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.

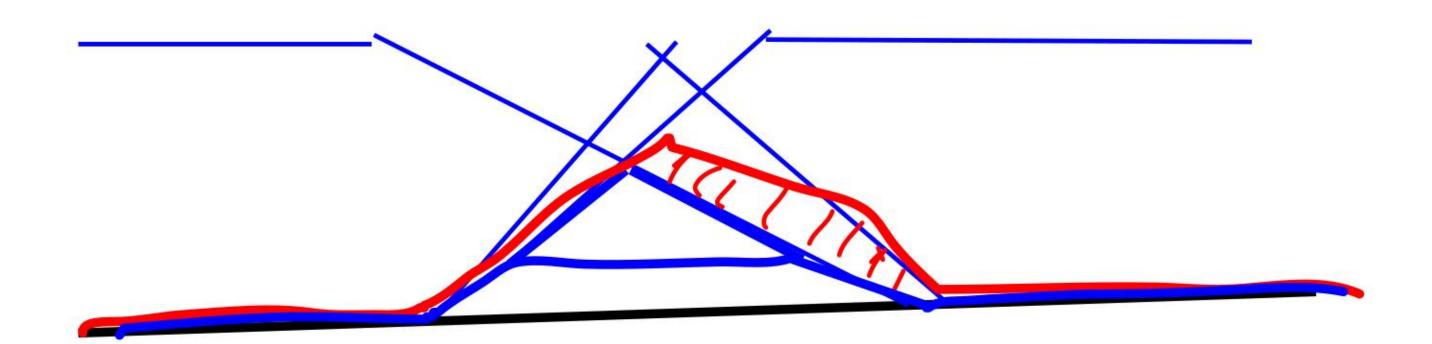
- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).

- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X})$ $\Phi(X) \not\subseteq C_i$, where the fuzzy intersection is standard (computed using min).

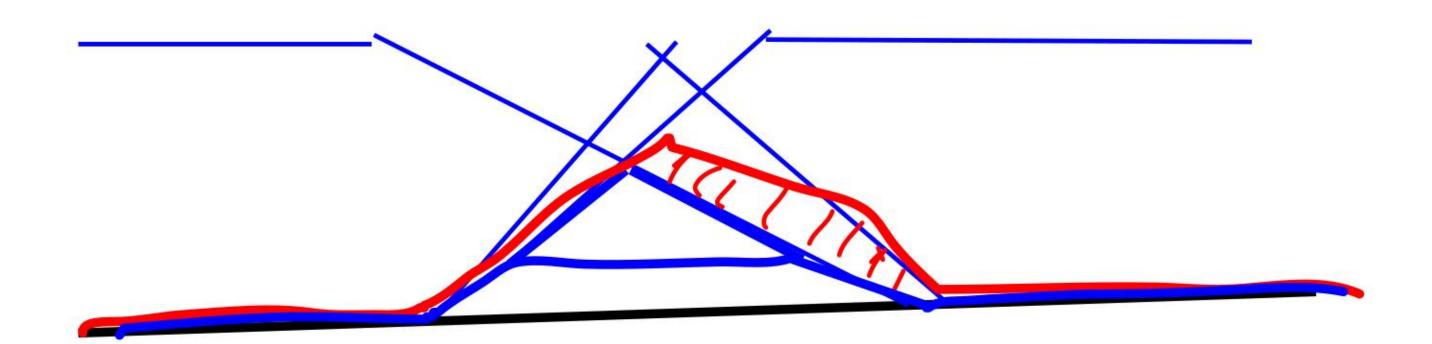


- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).
- Weak interpolation property: $\Phi(X)$ is in the convex hull of all C_i with i such that $\operatorname{Supp} A_i \cap \operatorname{Supp} X \neq \emptyset$.

- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X})$ $\Phi(X) \not\subseteq C_i$, where the fuzzy intersection is standard (computed using min).



- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X})$ $\Phi(X) \not\subseteq C_i$, where the fuzzy intersection is standard (computed using min).



34/75

• Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.

m

Recommendations on the rule base [Driankov et al. 1993]

33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

 $\frac{1}{2}$

m

Recommendations on the rule base [Driankov et al. 1993]

33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

 $\frac{1}{2}$

m p

Requirements on the rule base [Driankov et al. 1993]

32/75

- 1. Completeness: $\bigcup_i \operatorname{Supp} A_i = \mathcal{X}$, where $\operatorname{Supp} A_i = \{x \in \mathcal{X} \mid A_i(x) > 0\}$.
- 2. Consistency: $(A_i = A_j) \Rightarrow (C_i = C_j)$ (rather weak condition, otherwise, there is no model of such a rule base).
- 3. Continuity: $(A_i, A_j \text{ are "neighbouring antecedents"}) \Rightarrow (C_i \cap C_j \neq \emptyset)$. usually $(A_i \cap A_j \neq \emptyset) \Rightarrow (C_i \cap C_j \neq \emptyset)$.
- 4. Interaction or (local) correctness ([Thiele 1995]): $\forall j : \Phi(A_j) = C_j$.

The output of the controller should be the fuzzy union of the outputs of separate rules (i.e., FATI=FITA);

this weaker form always holds for a Mamdani–Assilian controller; see also [Lehmke, Reusch, Temme, Thiele 1998] for more general sufficient conditions for this equality).

X-----

m

Recommendations on the rule base [Driankov et al. 1993]

33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

 $\frac{1}{2}$

m

Recommendations on the rule base [Driankov et al. 1993]

33/75

Antecedents (one-dimensional) should be

- \bullet normal, $\forall i \; \exists x \in \mathcal{X} : A_i(x) = 1$,
- continuous,
- symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the standard t-norm, min) is 0.5.

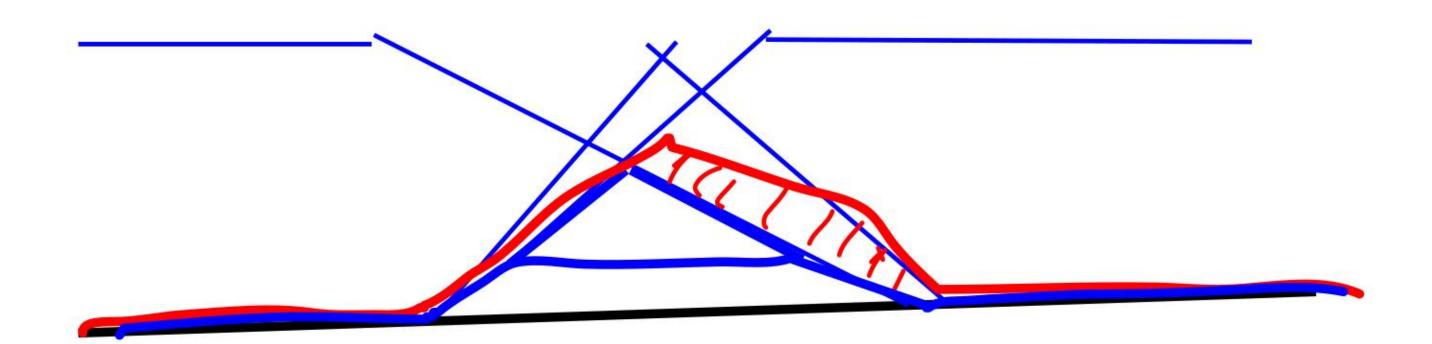
The recommended endpoints of the support of an antecedent are the peeks of the neighbouring antecedents.

 $\frac{1}{2}$

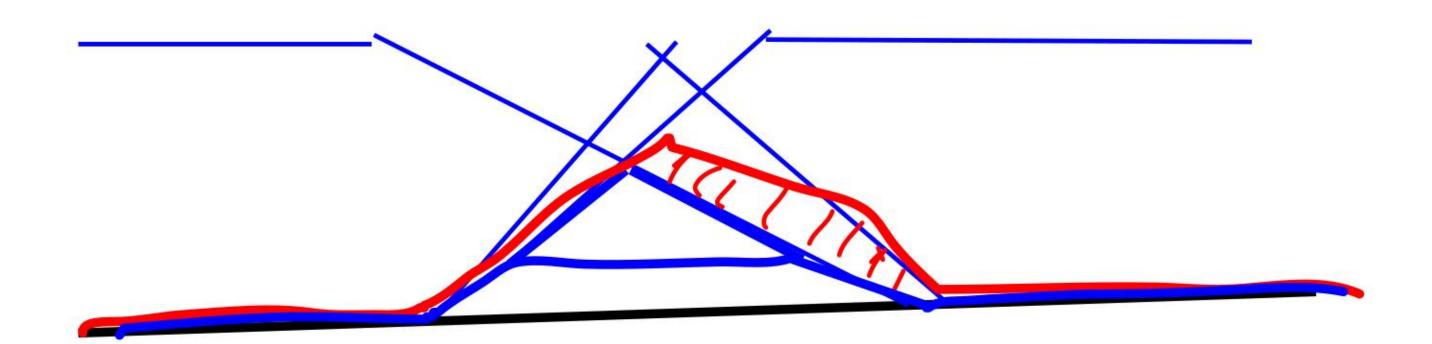
34/75

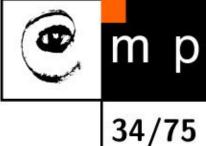
• Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.

- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X})$ $\Phi(X) \not\subseteq C_i$, where the fuzzy intersection is standard (computed using min).



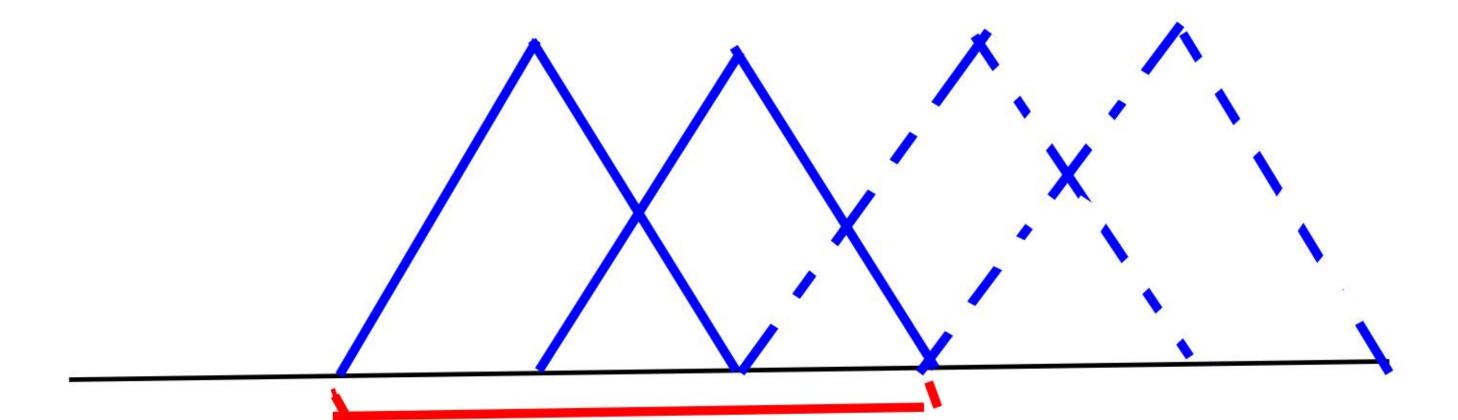
- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X})$ $\Phi(X) \not\subseteq C_i$, where the fuzzy intersection is standard (computed using min).





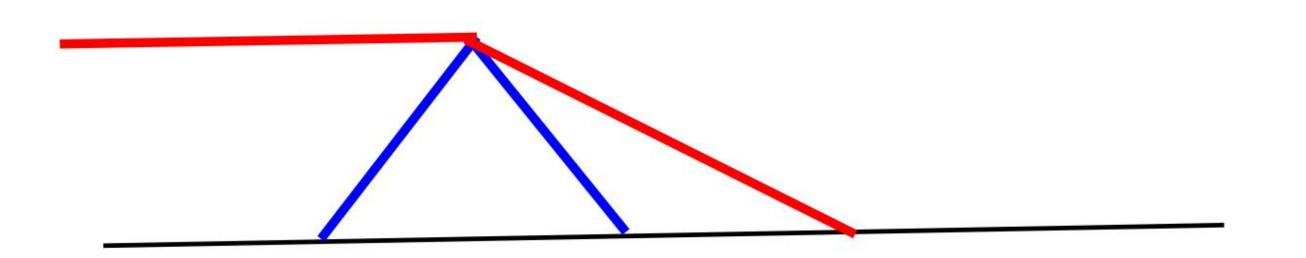
- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).
- Weak interpolation property: $\Phi(X)$ is in the convex hull of all C_i with i such that $\operatorname{Supp} A_i \cap \operatorname{Supp} X \neq \emptyset$.

- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).
- Weak interpolation property: $\Phi(X)$ is in the convex hull of all C_i with i such that $\operatorname{Supp} A_i \cap \operatorname{Supp} X \neq \emptyset$.



- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).
- Weak interpolation property: $\Phi(X)$ is in the convex hull of all C_i with i such that $\operatorname{Supp} A_i \cap \operatorname{Supp} X \neq \emptyset$.
- Crisp correctness (crisp interaction): $(A_i(x) = 1) \Rightarrow (\Phi(x) = \Phi(\{x\}) = C_i)$ ("if there is a totally firing rule, it determines the output").

- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).
- Weak interpolation property: $\Phi(X)$ is in the convex hull of all C_i with i such that Supp $A_i \cap \operatorname{Supp} X \neq \emptyset$.
- Crisp correctness (crisp interaction) $(A_i(x) = 1) \Rightarrow (\Phi(x) = \Phi(\{x\}) \in C_i)$ ("if there is a totally firing rule, it determines the output").



Completeness of the rule base

35/75

Completeness is required, because in any situation we need at least one firing rule.

Nevertheless, non-completeness is sometimes tolerated for the following reasons:

- In expert systems; "I don't know" could be a legitimate answer (of an expert system, not of a pilot!).
- The input is impossible (then do not include it in the input space!).
- The input values are fuzzified so that they always overlap with some antecedent.
- The sparse database is used for interpolation [Kóczy et al. 1997].
- Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional "else rule" [Amato, Di Nola, Navara 2003].

It is treated differently w.r.t. other requirements.

In any case, it assumes that we assign a meaning of "no action".

the output variable has to be defined always.

© m

Completeness of the rule base

35/75

Completeness is required, because in any situation we need at least one firing rule.

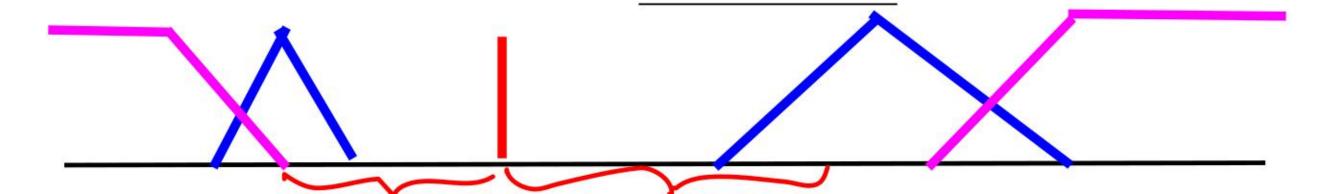
Nevertheless, non-completeness is sometimes tolerated for the following reasons:

- In expert systems; "I don't know" could be a legitimate answer (of an expert system, not of a pilot!).
- The input is impossible (then do not include it in the input space!).
- The input values are fuzzified so that they always overlap with some antecedent.
- The sparse database is used for interpolation [Kóczy et al. 1997].
- Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional "else rule" [Amato, Di Nola, Navara 2003].

It is treated differently w.r.t. other requirements.

In any case, it assumes that we assign a meaning of "no action". the output variable has to be defined always.



Completeness of the rule base

36/75

Omitting rules for some situations is motivated by the attempt to reduce the number of rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic variables.

This does not obviously mean that the antecedents are not complete; the case may be covered by neighbouring rules, although with a smaller degree of firing.

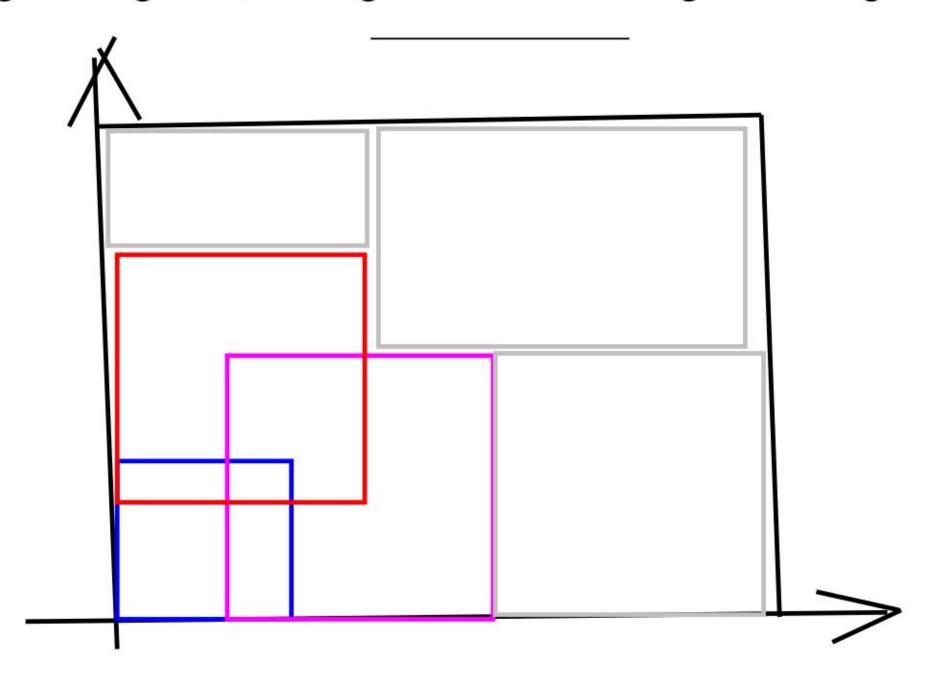
Completeness of the rule base

36/75

Omitting rules for some situations is motivated by the attempt to reduce the number of rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic variables.

This does not obviously mean that the antecedents are not complete; the case may be covered by neighbouring rules, although with a smaller degree of firing.



When
$$\forall j: \Phi(A_j) = A_j \circ R_{MA} = C_j$$
? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

37/75

When $\forall j: \Phi(A_j) = A_j \circ R_{\mathsf{MA}} = C_j$? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

37/75

When
$$\forall j: \Phi(A_j) = A_j \circ R_{MA} = C_j$$
? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

For Mamdani-Assilian controller:

Theorem:
$$\forall j: \Phi_{MA}(A_j) \geq C_j$$
.

$$\begin{array}{l} \textbf{Proof:} \ X := A_j \ , \\ \mathcal{D}(X,A_j) = \mathcal{D}(A_j,A_j) = 1 \qquad \text{(due to normality),} \\ \Phi_{\text{MA}}(A_j)(y) = \max_i (\mathcal{D}(A_j,A_i) \wedge C_i(y)) \geq \underbrace{\mathcal{D}(A_j,A_j)}_{1} \wedge C_j(y) = C_j(y) \ . \end{array}$$

e m p

Correctness of Mamdani-Assilian controller

38/75

Theorem [de Baets 1996, Perfilieva, Tonis 1997]: $(\forall j: \Phi_{\mathsf{MA}}(A_j) = C_j)$ iff $(\forall i \ \forall j: \mathcal{D}(A_i, A_j) \leq \mathcal{I}(C_i, C_j))$, where $\mathcal{I}(C_i, C_j) = \inf_y \left(C_i(y) \xrightarrow{\cdot} C_j(y)\right)$ (the implication \rightarrow has to be the residuum of \land).

Instead of $I(C_i, C_j)$ we may use $\mathcal{E}(C_i, C_j) = \inf_y \left(C_i(y) \leftrightarrow C_j(y)\right)$ (degree of indistinguishability (equality)), where $\alpha \leftrightarrow \beta = \min(\alpha \to \beta, \beta \to \alpha) = (\alpha \to \beta) \land (\beta \to \alpha)$.

Proof: The negation of the left-hand side is

$$\exists j \; \exists y : \Phi_{\mathsf{MA}}(A_{j})(y) > C_{j}(y) ,$$

$$\exists j \; \exists y \; \exists x : A_{j}(x) \land R_{\mathsf{MA}}(x,y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) \land C_{i}(y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) > C_{i}(y) \rightarrow C_{j}(y) ,$$

$$\exists i \; \exists j : \sup_{x} \left(A_{j}(x) \land A_{i}(x) \right) > \inf_{y} \left(C_{i}(y) \rightarrow C_{j}(y) \right) ,$$

which is the negation of the right-hand side.

38/75

Theorem [de Baets 1996, Perfilieva, Tonis 1997]: $(\forall j: \Phi_{\mathsf{MA}}(A_j) = C_j)$ iff $(\forall i \ \forall j: \mathcal{D}(A_i, A_j) < \mathcal{I}(C_i, C_j))$, where $\mathcal{I}(C_i, C_j) = \inf_{u} \left(C_i(y) \to C_j(y) \right)$ (the implication \to has to be the residuum of \land).

Instead of
$$I(C_i, C_j)$$
 we may use $\mathcal{E}(C_i, C_j) = \inf_{\mathcal{U}} \left(C_i(y) \leftrightarrow C_j(y) \right)$ (degree of indistinguishability (equality)), where $\alpha \leftrightarrow \beta = \min(\alpha \to \beta, \beta \to \alpha) = (\alpha \to \beta) \land (\beta \to \alpha)$.

Proof: The negation of the left-hand side is

$$\exists j \; \exists y : \Phi_{\mathsf{MA}}(A_{j})(y) > C_{j}(y) ,$$

$$\exists j \; \exists y \; \exists x : A_{j}(x) \land R_{\mathsf{MA}}(x,y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) \land C_{i}(y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) > C_{i}(y) \rightarrow C_{j}(y) ,$$

$$\exists i \; \exists j : \sup_{x} (A_{j}(x) \land A_{i}(x)) > \inf_{y} (C_{i}(y) \rightarrow C_{j}(y)) ,$$

which is the negation of the right-hand side.

Correctness of Mamdani–Assilian controller [Moser, Navara 1999]

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \text{Supp } A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

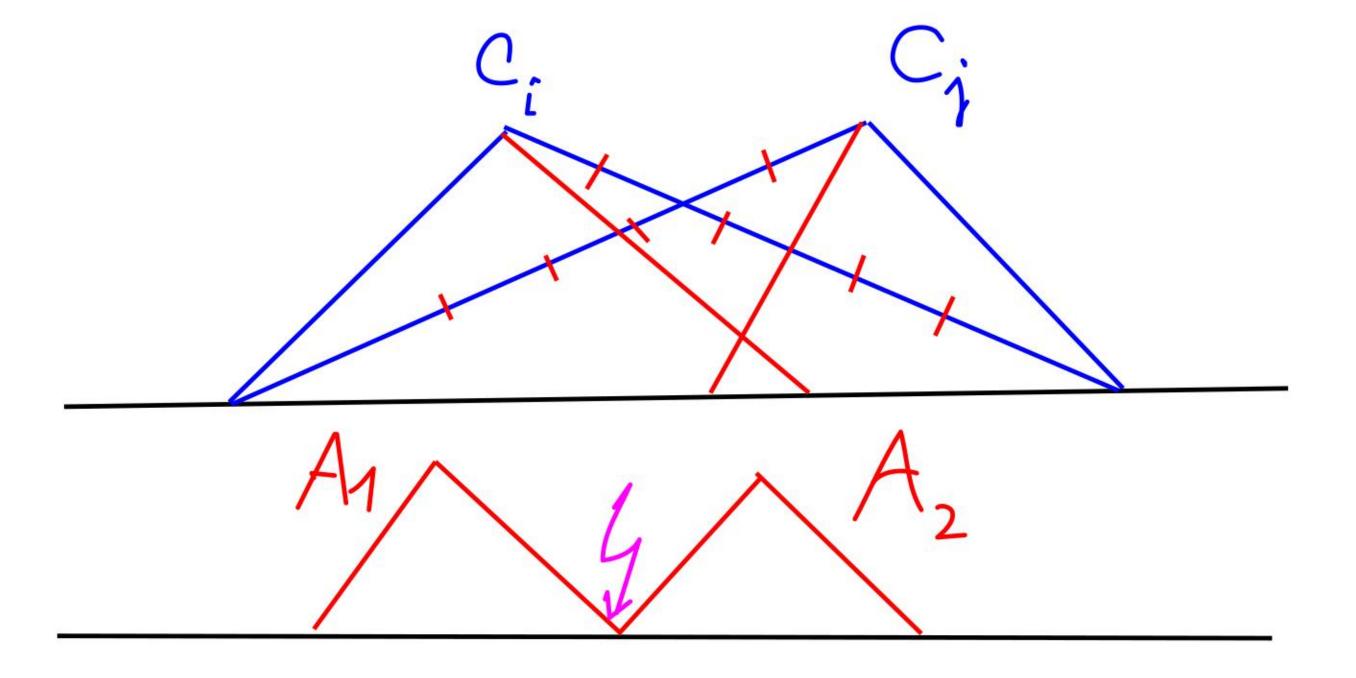
Correctness of Mamdani–Assilian controller [Moser, Navara 1999]

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i,A_j) \leq \mathcal{E}(C_i,C_j)$ is satisfied in two situations:

 $\mathcal{E}(C_i,C_j)>0$; then $\operatorname{\mathsf{Supp}} C_i=\operatorname{\mathsf{Supp}} C_j$, which is rather unusual,

 $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \text{Supp } A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.



39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \operatorname{Supp} A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

This problem does not occur if \land has zero divisors (e.g., the Łukasiewicz t-norm).

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \operatorname{Supp} A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

This problem does not occur if \wedge has zero divisors (e.g., the Łukasiewicz t-norm).

However, this choice may easily violate the strong completeness [Moser, Navara 1999].

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \operatorname{Supp} A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

This problem does not occur if \land has zero divisors (e.g., the Łukasiewicz t-norm).

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \operatorname{Supp} A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

This problem does not occur if \wedge has zero divisors (e.g., the Łukasiewicz t-norm).

However, this choice may easily violate the strong completeness [Moser, Navara 1999].

Correctness of residuum-based controller

Theorem: $\forall j: \Phi_{\mathsf{RES}}(A_j) \leq C_j$.

Proof: $X := A_j$,

$$\Phi_{\mathsf{RES}}(A_j)(y) = \sup_{x} \left(A_j(x) \wedge \min_{i} (A_i(x) \to C_i(y)) \right)$$

$$\leq \sup_{x} \left(A_j(x) \wedge (A_j(x) \to C_j(y)) \right) \leq C_j(y).$$

Theorem: If there is a fuzzy relation R such that $\forall j: A_j \circ R = C_j$, then also R_{RES} satisfies these equalities (and it is the largest solution).

Proof: $\forall j \ \forall x \ \forall y$:

$$A_j(x) \wedge R(x,y) \leq C_j(y)$$

$$R(x,y) \leq A_j(x) \to C_j(y)$$

$$R(x,y) \leq \min_i \left(A_i(x) \to C_i(y) \right) = R_{\text{RES}}(x,y) ,$$

$$C_j = A_j \circ R \le A_j \circ R_{\mathsf{RES}} \le C_j$$
 .

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \operatorname{Supp} A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

This problem does not occur if \wedge has zero divisors (e.g., the Łukasiewicz t-norm).

However, this choice may easily violate the strong completeness [Moser, Navara 1999].

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \operatorname{Supp} A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

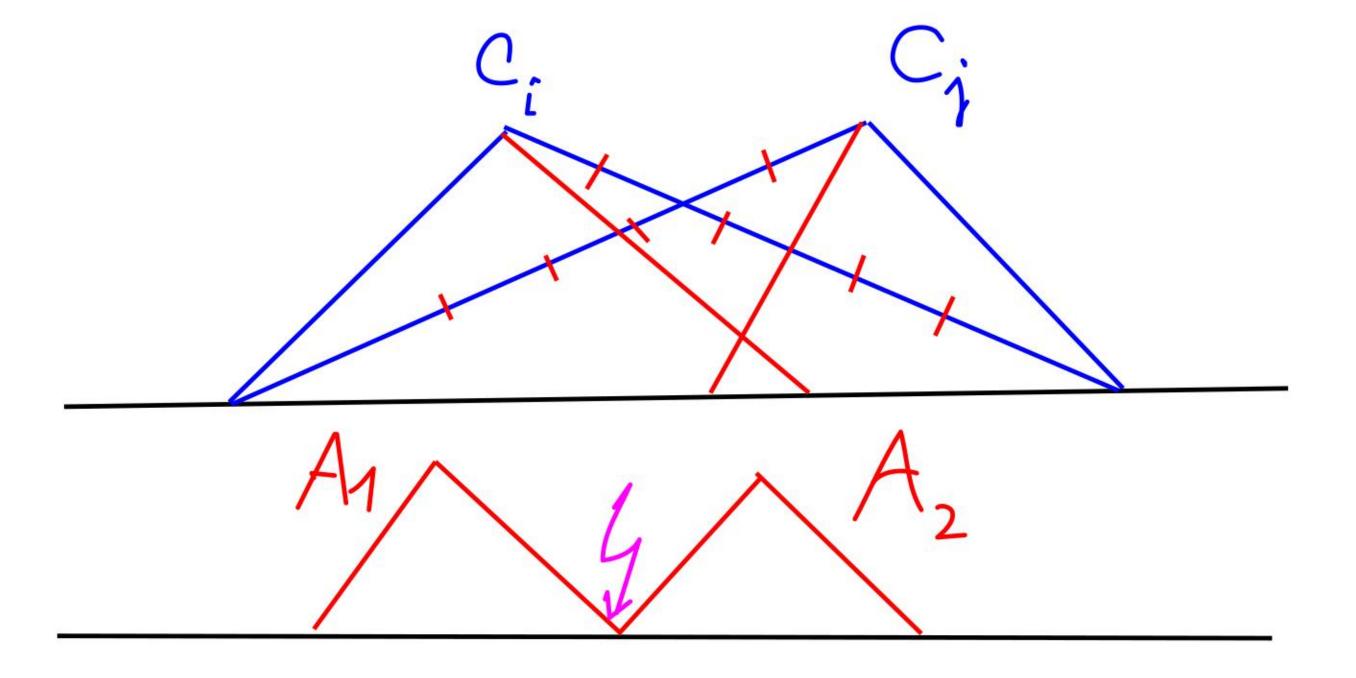
This problem does not occur if \land has zero divisors (e.g., the Łukasiewicz t-norm).

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i,A_j) \leq \mathcal{E}(C_i,C_j)$ is satisfied in two situations:

 $\mathcal{E}(C_i,C_j)>0$; then $\operatorname{\mathsf{Supp}} C_i=\operatorname{\mathsf{Supp}} C_j$, which is rather unusual,

 $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \text{Supp } A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

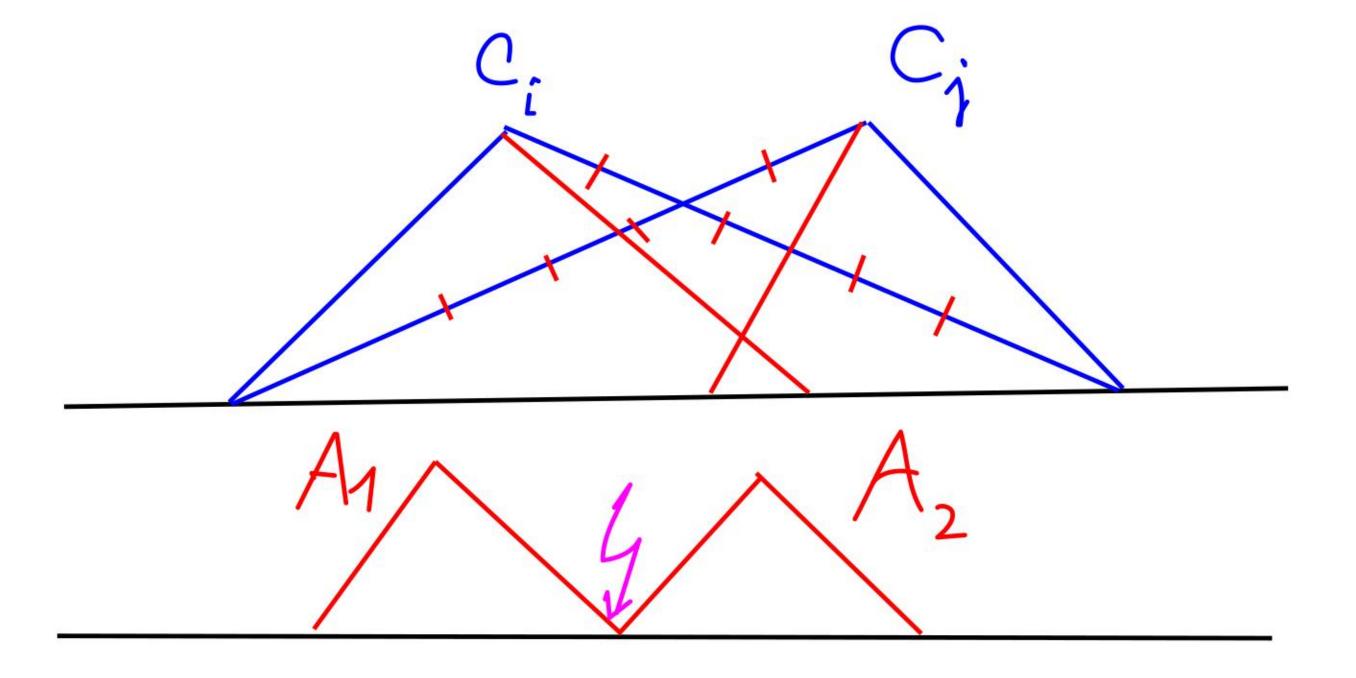


39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i,A_j) \leq \mathcal{E}(C_i,C_j)$ is satisfied in two situations:

 $\mathcal{E}(C_i,C_j)>0$; then $\operatorname{\mathsf{Supp}} C_i=\operatorname{\mathsf{Supp}} C_j$, which is rather unusual,

 $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \text{Supp } A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.



38/75

```
Theorem [de Baets 1996, Perfilieva, Tonis 1997]: (\forall j: \Phi_{\mathsf{MA}}(A_j) = C_j) iff (\forall i \ \forall j: \mathcal{D}(A_i, A_i) < \mathcal{I}(C_i, C_j)), where \mathcal{I}(C_i, C_j) = \inf_u \left( C_i(y) \to C_j(y) \right) (the implication \to has to be the residuum of \land).
```

Instead of
$$I(C_i, C_j)$$
 we may use $\mathcal{E}(C_i, C_j) = \inf_{\mathcal{U}} \left(C_i(y) \leftrightarrow C_j(y) \right)$ (degree of indistinguishability (equality)), where $\alpha \leftrightarrow \beta = \min(\alpha \to \beta, \beta \to \alpha) = (\alpha \to \beta) \land (\beta \to \alpha)$.

Proof: The negation of the left-hand side is

$$\exists j \; \exists y : \Phi_{\mathsf{MA}}(A_{j})(y) > C_{j}(y) ,$$

$$\exists j \; \exists y \; \exists x : A_{j}(x) \land R_{\mathsf{MA}}(x,y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) \land C_{i}(y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) > C_{i}(y) \rightarrow C_{j}(y) ,$$

$$\exists i \; \exists j : \sup_{x} \left(A_{j}(x) \land A_{i}(x) \right) > \inf_{y} \left(C_{i}(y) \rightarrow C_{j}(y) \right) ,$$

which is the negation of the right-hand side.

38/75

```
Theorem [de Baets 1996, Perfilieva, Tonis 1997]: (\forall j: \Phi_{\mathsf{MA}}(A_j) = C_j) iff (\forall i \ \forall j: \mathcal{D}(A_i, A_i) < \mathcal{I}(C_i, C_j)), where \mathcal{I}(C_i, C_j) = \inf_u \left( C_i(y) \to C_j(y) \right) (the implication \to has to be the residuum of \land).
```

Instead of
$$I(C_i, C_j)$$
 we may use $\mathcal{E}(C_i, C_j) = \inf_{\mathcal{U}} \left(C_i(y) \leftrightarrow C_j(y) \right)$ (degree of indistinguishability (equality)), where $\alpha \leftrightarrow \beta = \min(\alpha \to \beta, \beta \to \alpha) = (\alpha \to \beta) \land (\beta \to \alpha)$.

Proof: The negation of the left-hand side is

$$\exists j \; \exists y : \Phi_{\mathsf{MA}}(A_{j})(y) > C_{j}(y) ,$$

$$\exists j \; \exists y \; \exists x : A_{j}(x) \land R_{\mathsf{MA}}(x,y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) \land C_{i}(y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) > C_{i}(y) \rightarrow C_{j}(y) ,$$

$$\exists i \; \exists j : \sup_{x} \left(A_{j}(x) \land A_{i}(x) \right) > \inf_{y} \left(C_{i}(y) \rightarrow C_{j}(y) \right) ,$$

which is the negation of the right-hand side.

37/75

When
$$\forall j: \Phi(A_j) = A_j \circ R_{MA} = C_j$$
? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

For Mamdani-Assilian controller:

Theorem:
$$\forall j : \Phi_{MA}(A_j) \geq C_j$$
.

$$\begin{array}{l} \textbf{Proof:} \ X := A_j \,, \\ \mathcal{D}(X,A_j) = \mathcal{D}(A_j,A_j) = 1 \qquad \text{(due to normality),} \\ \Phi_{\text{MA}}(A_j)(y) = \max_i (\mathcal{D}(A_j,A_i) \wedge C_i(y)) \geq \underbrace{\mathcal{D}(A_j,A_j)}_{i} \wedge C_j(y) = C_j(y) \,. \end{array}$$

37/75

When $\forall j: \Phi(A_j) = A_j \circ R_{\mathsf{MA}} = C_j$? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

37/75

When $\forall j: \Phi(A_j) = A_j \circ R_{\mathsf{MA}} = C_j$? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

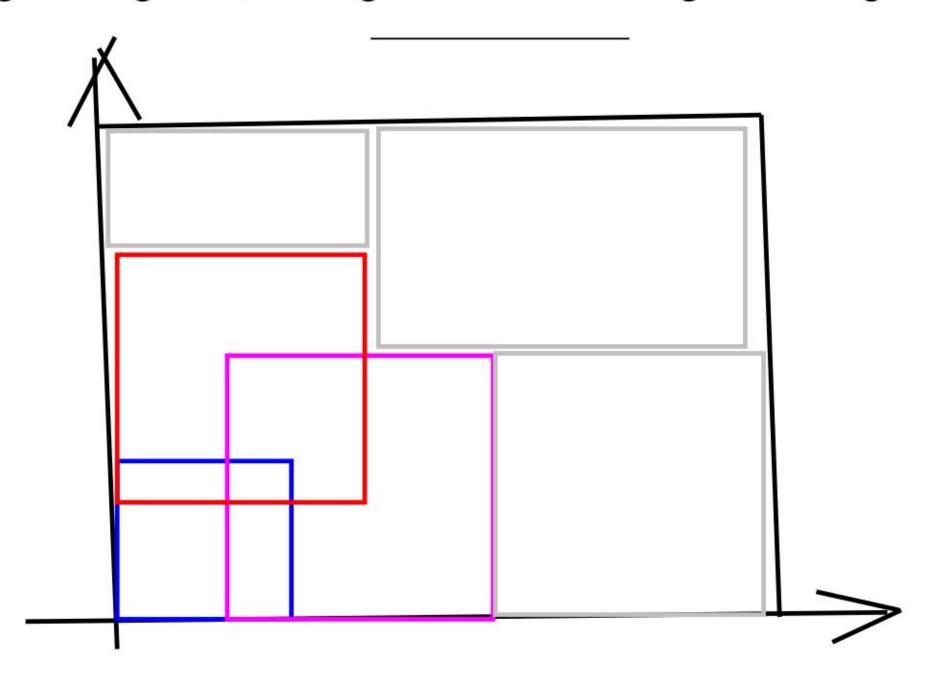
Completeness of the rule base

36/75

Omitting rules for some situations is motivated by the attempt to reduce the number of rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic variables.

This does not obviously mean that the antecedents are not complete; the case may be covered by neighbouring rules, although with a smaller degree of firing.



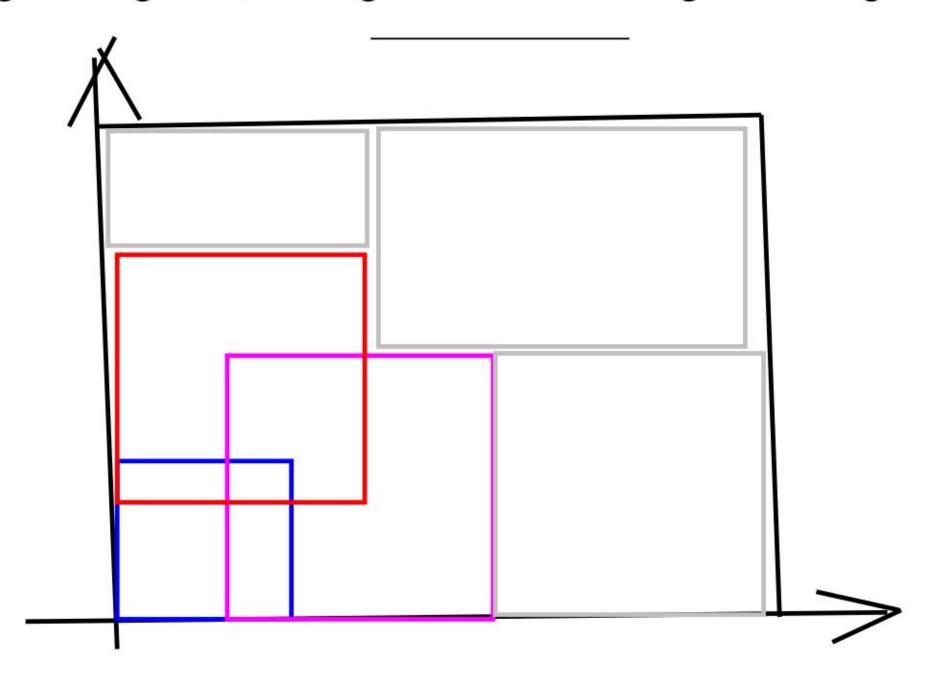
Completeness of the rule base

36/75

Omitting rules for some situations is motivated by the attempt to reduce the number of rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic variables.

This does not obviously mean that the antecedents are not complete; the case may be covered by neighbouring rules, although with a smaller degree of firing.



© m

Completeness of the rule base

35/75

Completeness is required, because in any situation we need at least one firing rule.

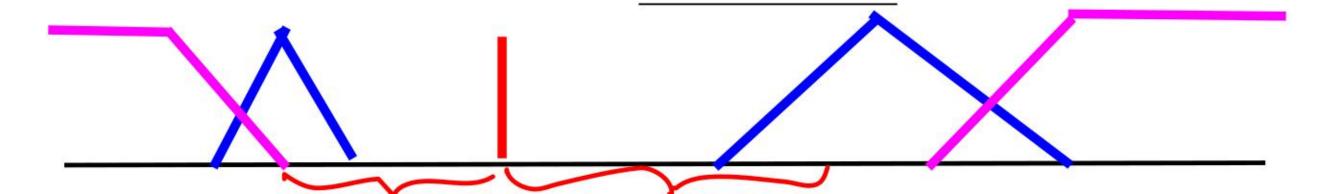
Nevertheless, non-completeness is sometimes tolerated for the following reasons:

- In expert systems; "I don't know" could be a legitimate answer (of an expert system, not of a pilot!).
- The input is impossible (then do not include it in the input space!).
- The input values are fuzzified so that they always overlap with some antecedent.
- The sparse database is used for interpolation [Kóczy et al. 1997].
- Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional "else rule" [Amato, Di Nola, Navara 2003].

It is treated differently w.r.t. other requirements.

In any case, it assumes that we assign a meaning of "no action". the output variable has to be defined always.



© m

Completeness of the rule base

35/75

Completeness is required, because in any situation we need at least one firing rule.

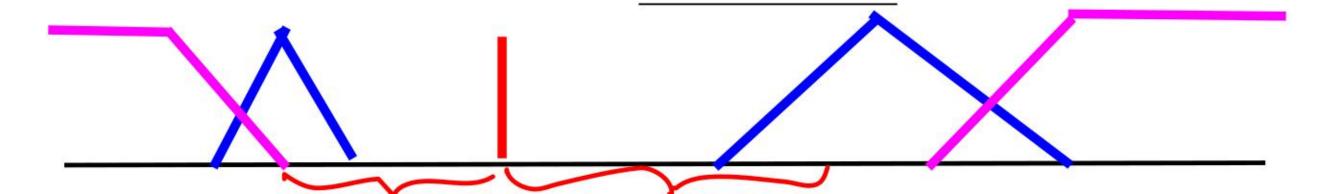
Nevertheless, non-completeness is sometimes tolerated for the following reasons:

- In expert systems; "I don't know" could be a legitimate answer (of an expert system, not of a pilot!).
- The input is impossible (then do not include it in the input space!).
- The input values are fuzzified so that they always overlap with some antecedent.
- The sparse database is used for interpolation [Kóczy et al. 1997].
- Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional "else rule" [Amato, Di Nola, Navara 2003].

It is treated differently w.r.t. other requirements.

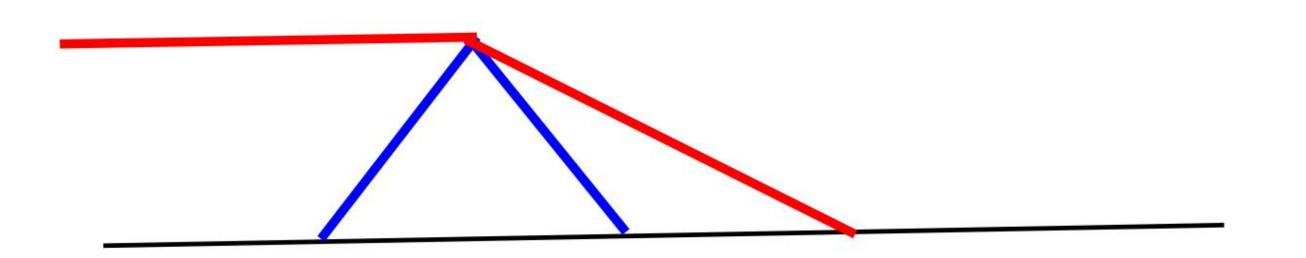
In any case, it assumes that we assign a meaning of "no action". the output variable has to be defined always.



Requirements on the rule base [Moser, Navara 2002]

34/75

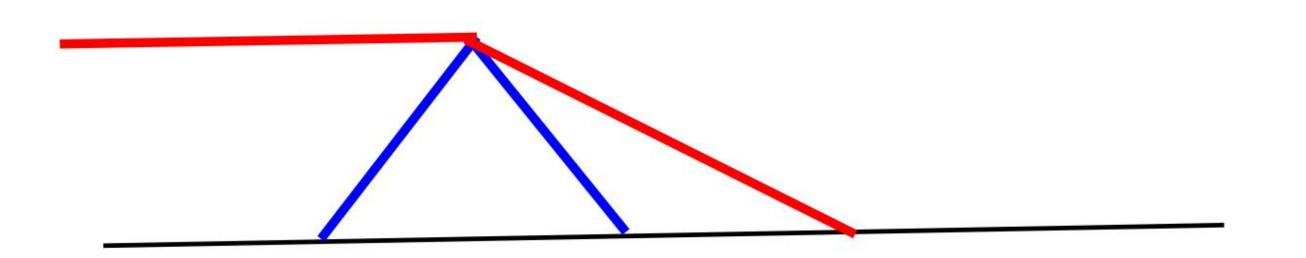
- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).
- Weak interpolation property: $\Phi(X)$ is in the convex hull of all C_i with i such that Supp $A_i \cap \operatorname{Supp} X \neq \emptyset$.
- Crisp correctness (crisp interaction) $(A_i(x) = 1) \Rightarrow (\Phi(x) = \Phi(\{x\}) \in C_i)$ ("if there is a totally firing rule, it determines the output").



Requirements on the rule base [Moser, Navara 2002]

34/75

- Local correctness (interaction): $\forall j: \Phi(A_j) = C_j$.
- Strong completeness: \forall normal $X \in \mathcal{F}(\mathcal{X}) : \Phi(X) \not\subseteq \bigcap_i C_i$, where the fuzzy intersection is standard (computed using min).
- Weak interpolation property: $\Phi(X)$ is in the convex hull of all C_i with i such that Supp $A_i \cap \operatorname{Supp} X \neq \emptyset$.
- Crisp correctness (crisp interaction) $(A_i(x) = 1) \Rightarrow (\Phi(x) = \Phi(\{x\}) \in C_i)$ ("if there is a totally firing rule, it determines the output").



© m

Completeness of the rule base

35/75

Completeness is required, because in any situation we need at least one firing rule.

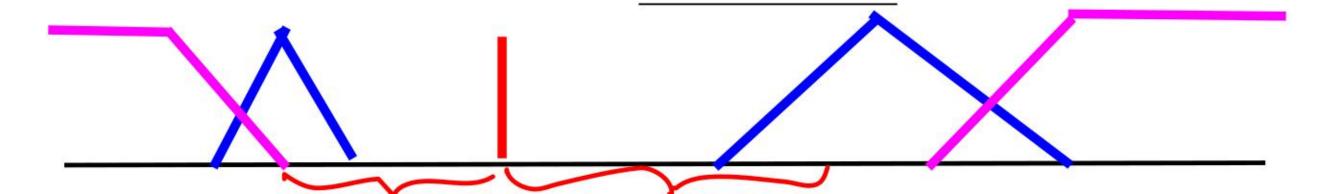
Nevertheless, non-completeness is sometimes tolerated for the following reasons:

- In expert systems; "I don't know" could be a legitimate answer (of an expert system, not of a pilot!).
- The input is impossible (then do not include it in the input space!).
- The input values are fuzzified so that they always overlap with some antecedent.
- The sparse database is used for interpolation [Kóczy et al. 1997].
- Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional "else rule" [Amato, Di Nola, Navara 2003].

It is treated differently w.r.t. other requirements.

In any case, it assumes that we assign a meaning of "no action". the output variable has to be defined always.



© m

Completeness of the rule base

35/75

Completeness is required, because in any situation we need at least one firing rule.

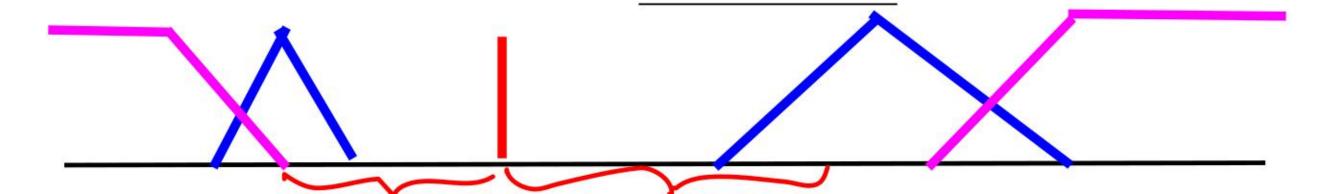
Nevertheless, non-completeness is sometimes tolerated for the following reasons:

- In expert systems; "I don't know" could be a legitimate answer (of an expert system, not of a pilot!).
- The input is impossible (then do not include it in the input space!).
- The input values are fuzzified so that they always overlap with some antecedent.
- The sparse database is used for interpolation [Kóczy et al. 1997].
- Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional "else rule" [Amato, Di Nola, Navara 2003].

It is treated differently w.r.t. other requirements.

In any case, it assumes that we assign a meaning of "no action". the output variable has to be defined always.



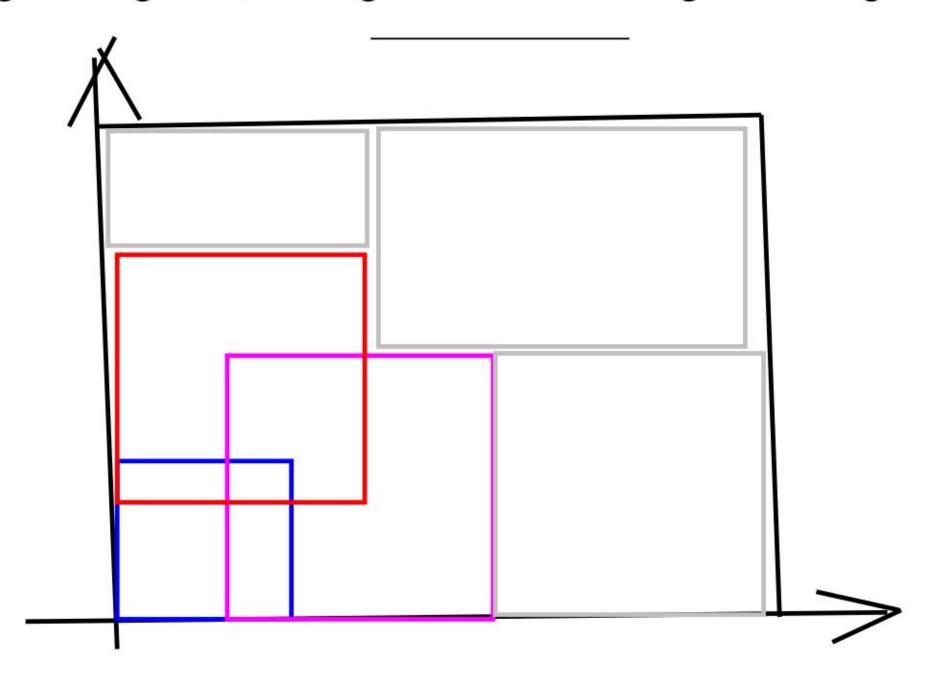
Completeness of the rule base

36/75

Omitting rules for some situations is motivated by the attempt to reduce the number of rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic variables.

This does not obviously mean that the antecedents are not complete; the case may be covered by neighbouring rules, although with a smaller degree of firing.



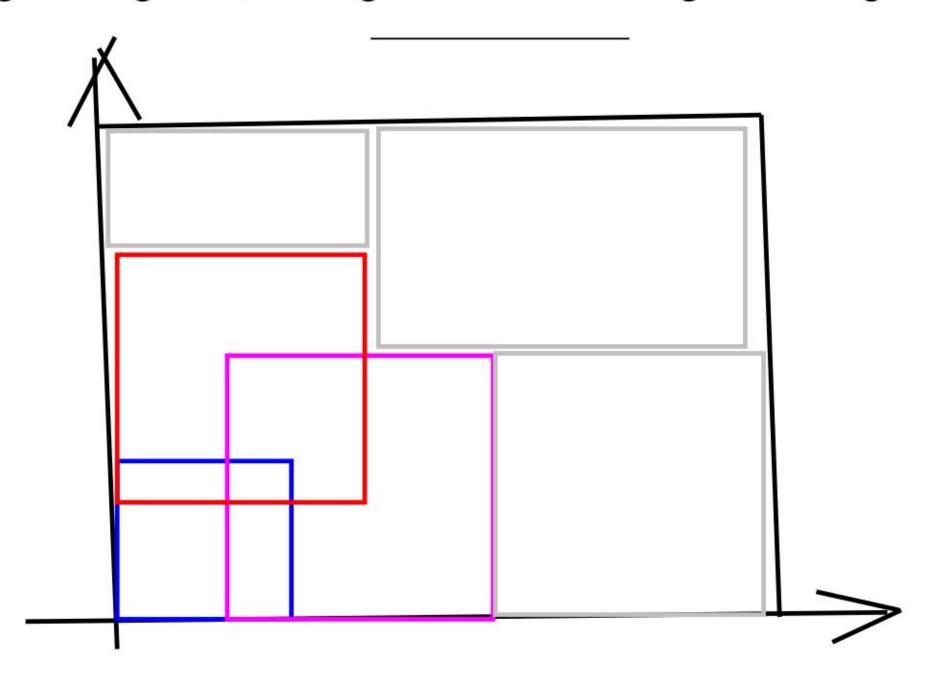
Completeness of the rule base

36/75

Omitting rules for some situations is motivated by the attempt to reduce the number of rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic variables.

This does not obviously mean that the antecedents are not complete; the case may be covered by neighbouring rules, although with a smaller degree of firing.



37/75

When $\forall j: \Phi(A_j) = A_j \circ R_{\mathsf{MA}} = C_j$? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

37/75

When $\forall j: \Phi(A_j) = A_j \circ R_{\mathsf{MA}} = C_j$? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

37/75

When
$$\forall j: \Phi(A_j) = A_j \circ R_{MA} = C_j$$
? (A system of fuzzy relational equations for a fuzzy relation R_{MA} .)

For Mamdani-Assilian controller:

Theorem:
$$\forall j: \Phi_{MA}(A_j) \geq C_j$$
.

$$\begin{array}{l} \textbf{Proof:} \ X := A_j \ , \\ \mathcal{D}(X,A_j) = \mathcal{D}(A_j,A_j) = 1 \qquad \text{(due to normality),} \\ \Phi_{\text{MA}}(A_j)(y) = \max_i (\mathcal{D}(A_j,A_i) \wedge C_i(y)) \geq \underbrace{\mathcal{D}(A_j,A_j)}_{1} \wedge C_j(y) = C_j(y) \ . \end{array}$$

38/75

Theorem [de Baets 1996, Perfilieva, Tonis 1997]: $(\forall j: \Phi_{\mathsf{MA}}(A_j) = C_j)$ iff $(\forall i \ \forall j: \mathcal{D}(A_i, A_j) < \mathcal{I}(C_i, C_j))$, where $\mathcal{I}(C_i, C_j) = \inf_{u} \left(C_i(y) \to C_j(y) \right)$ (the implication \to has to be the residuum of \land).

Instead of
$$I(C_i, C_j)$$
 we may use $\mathcal{E}(C_i, C_j) = \inf_{\mathcal{U}} \left(C_i(y) \leftrightarrow C_j(y) \right)$ (degree of indistinguishability (equality)), where $\alpha \leftrightarrow \beta = \min(\alpha \to \beta, \beta \to \alpha) = (\alpha \to \beta) \land (\beta \to \alpha)$.

Proof: The negation of the left-hand side is

$$\exists j \; \exists y : \Phi_{\mathsf{MA}}(A_{j})(y) > C_{j}(y) ,$$

$$\exists j \; \exists y \; \exists x : A_{j}(x) \land R_{\mathsf{MA}}(x,y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) \land C_{i}(y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) > C_{i}(y) \rightarrow C_{j}(y) ,$$

$$\exists i \; \exists j : \sup_{x} (A_{j}(x) \land A_{i}(x)) > \inf_{y} (C_{i}(y) \rightarrow C_{j}(y)) ,$$

which is the negation of the right-hand side.

38/75

Theorem [de Baets 1996, Perfilieva, Tonis 1997]: $(\forall j: \Phi_{\mathsf{MA}}(A_j) = C_j)$ iff $(\forall i \ \forall j: \mathcal{D}(A_i, A_j) < \mathcal{I}(C_i, C_j))$, where $\mathcal{I}(C_i, C_j) = \inf_{u} \left(C_i(y) \to C_j(y) \right)$ (the implication \to has to be the residuum of \land).

Instead of
$$I(C_i, C_j)$$
 we may use $\mathcal{E}(C_i, C_j) = \inf_{\mathcal{U}} \left(C_i(y) \leftrightarrow C_j(y) \right)$ (degree of indistinguishability (equality)), where $\alpha \leftrightarrow \beta = \min(\alpha \to \beta, \beta \to \alpha) = (\alpha \to \beta) \land (\beta \to \alpha)$.

Proof: The negation of the left-hand side is

$$\exists j \; \exists y : \Phi_{\mathsf{MA}}(A_{j})(y) > C_{j}(y) ,$$

$$\exists j \; \exists y \; \exists x : A_{j}(x) \land R_{\mathsf{MA}}(x,y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) \land C_{i}(y) > C_{j}(y) ,$$

$$\exists i \; \exists j \; \exists y \; \exists x : A_{j}(x) \land A_{i}(x) > C_{i}(y) \rightarrow C_{j}(y) ,$$

$$\exists i \; \exists j : \sup_{x} (A_{j}(x) \land A_{i}(x)) > \inf_{y} (C_{i}(y) \rightarrow C_{j}(y)) ,$$

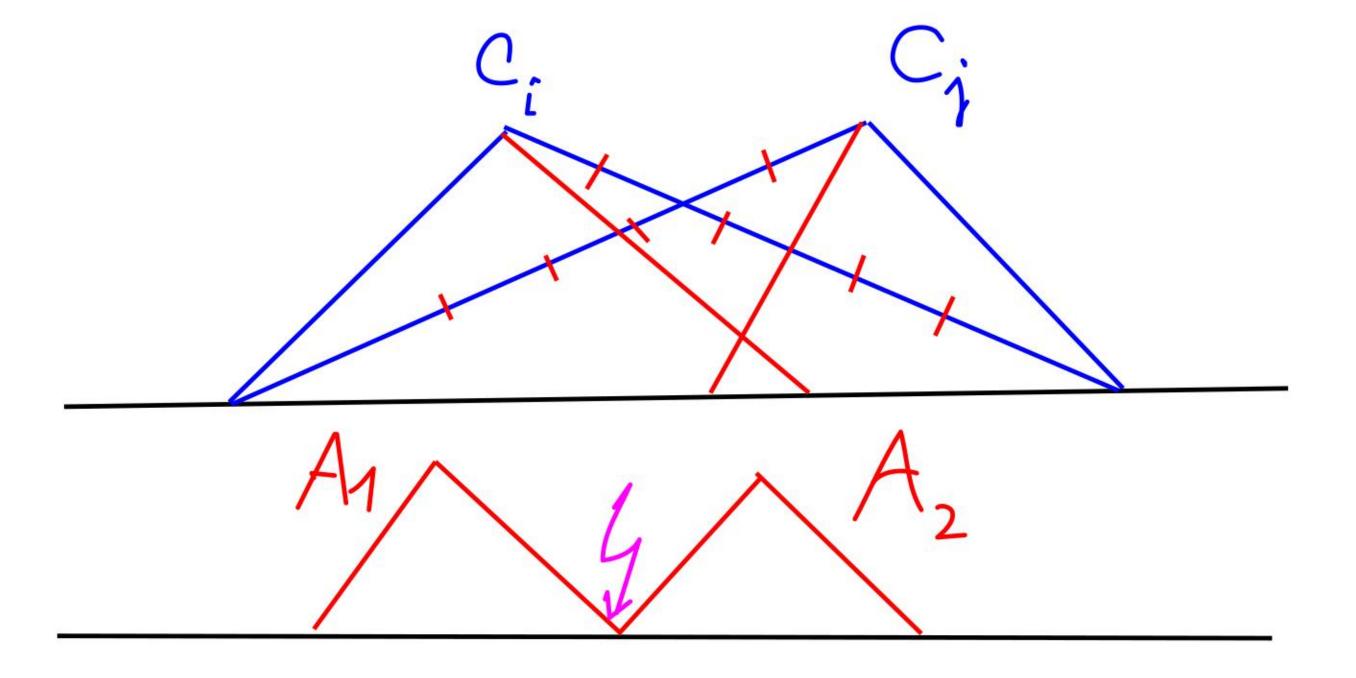
which is the negation of the right-hand side.

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i,A_j) \leq \mathcal{E}(C_i,C_j)$ is satisfied in two situations:

 $\mathcal{E}(C_i,C_j)>0$; then $\operatorname{\mathsf{Supp}} C_i=\operatorname{\mathsf{Supp}} C_j$, which is rather unusual,

 $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \text{Supp } A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

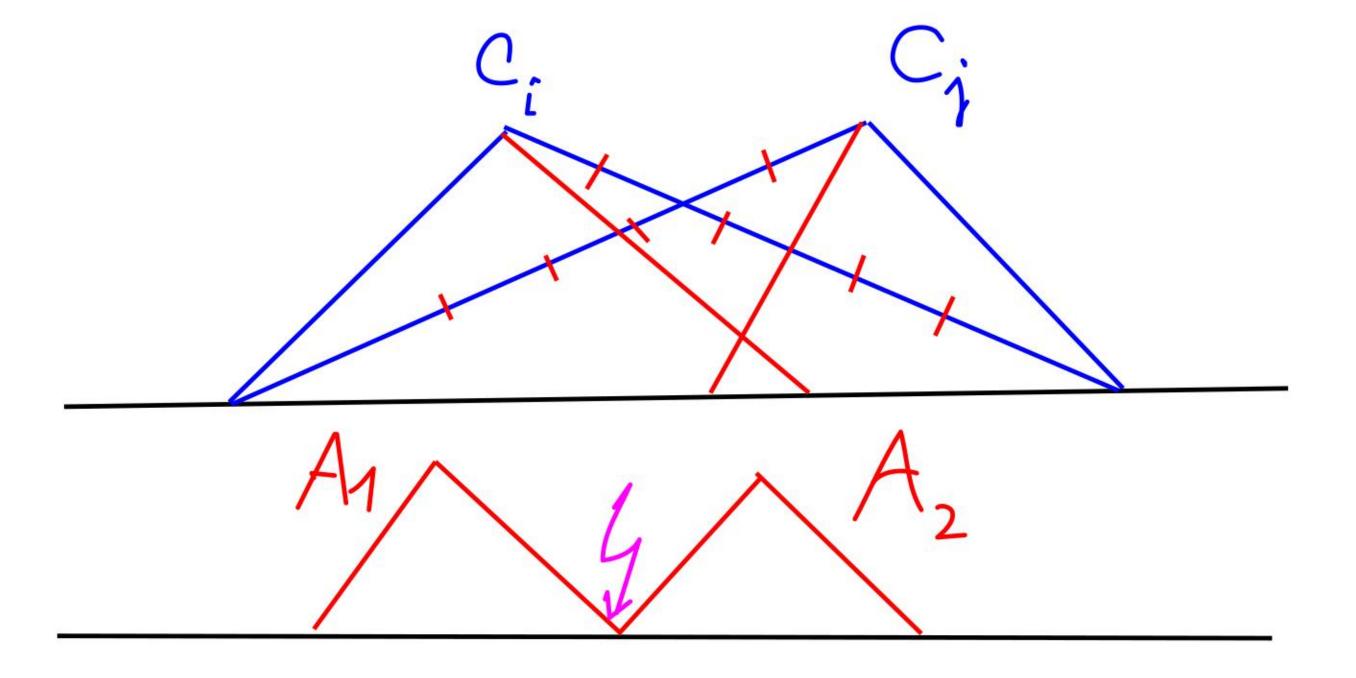


39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i,A_j) \leq \mathcal{E}(C_i,C_j)$ is satisfied in two situations:

 $\mathcal{E}(C_i,C_j)>0$; then $\operatorname{\mathsf{Supp}} C_i=\operatorname{\mathsf{Supp}} C_j$, which is rather unusual,

 $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \text{Supp } A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.



39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \operatorname{Supp} A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

This problem does not occur if \land has zero divisors (e.g., the Łukasiewicz t-norm).

39/75

If \wedge has no zero divisors (e.g., the minimum or product), then $\mathcal{D}(A_i, A_j) \leq \mathcal{E}(C_i, C_j)$ is satisfied in two situations:

- $\mathcal{E}(C_i, C_j) > 0$; then Supp $C_i = \text{Supp } C_j$, which is rather unusual,
- $\mathcal{E}(C_i, C_j) = 0$; then $\mathcal{D}(A_i, A_j) = 0$, Supp $A_i \cap \operatorname{Supp} A_j = \emptyset$; for continuous degrees of membership, strong completeness is violated.

This problem does not occur if \wedge has zero divisors (e.g., the Łukasiewicz t-norm).

However, this choice may easily violate the strong completeness [Moser, Navara 1999].

Correctness of residuum-based controller

Theorem: $\forall j: \Phi_{\mathsf{RES}}(A_j) \leq C_j$.

Proof: $X := A_j$,

$$\Phi_{\mathsf{RES}}(A_j)(y) = \sup_{x} \left(A_j(x) \wedge \min_{i} (A_i(x) \to C_i(y)) \right)$$

$$\leq \sup_{x} \left(A_j(x) \wedge (A_j(x) \to C_j(y)) \right) \leq C_j(y).$$

Theorem: If there is a fuzzy relation R such that $\forall j: A_j \circ R = C_j$, then also R_{RES} satisfies these equalities (and it is the largest solution).

Proof: $\forall j \ \forall x \ \forall y$:

$$A_j(x) \wedge R(x,y) \leq C_j(y)$$

$$R(x,y) \leq A_j(x) \to C_j(y)$$

$$R(x,y) \leq \min_i \left(A_i(x) \to C_i(y) \right) = R_{\text{RES}}(x,y) ,$$

$$C_j = A_j \circ R \le A_j \circ R_{\mathsf{RES}} \le C_j$$
 .

What happens if correctness is violated?

41/75

Nothing serious, this is usually accepted and possibly compensated during the tuning.

However, it causes a distorted interpretation of (possibly good) control rules.

Correctness of residuum-based controller

Theorem: $\forall j: \Phi_{\mathsf{RES}}(A_j) \leq C_j$.

Proof: $X := A_j$,

$$\Phi_{\mathsf{RES}}(A_j)(y) = \sup_{x} \left(A_j(x) \wedge \min_{i} (A_i(x) \to C_i(y)) \right)$$

$$\leq \sup_{x} \left(A_j(x) \wedge (A_j(x) \to C_j(y)) \right) \leq C_j(y).$$

Theorem: If there is a fuzzy relation R such that $\forall j: A_j \circ R = C_j$, then also R_{RES} satisfies these equalities (and it is the largest solution).

Proof: $\forall j \ \forall x \ \forall y$:

$$A_j(x) \wedge R(x,y) \leq C_j(y)$$

$$R(x,y) \leq A_j(x) \to C_j(y)$$

$$R(x,y) \leq \min_i \left(A_i(x) \to C_i(y) \right) = R_{\text{RES}}(x,y) ,$$

$$C_j = A_j \circ R \le A_j \circ R_{\mathsf{RES}} \le C_j$$
 .

What happens if correctness is violated?

41/75

Nothing serious, this is usually accepted and possibly compensated during the tuning.

However, it causes a distorted interpretation of (possibly good) control rules.

An alternative: CFR (Controller with conditionally firing rules) [Moser, Navara 2002]

42/75

1st generalization of Mamdani-Assilian controller:

 $\varrho \colon [0,1] \to [0,1] \dots$ increasing bijection, e.g., $\varrho(t) = t^r$, r > 1, or piecewise linear. Transformation of membership degrees in the input space \mathcal{X} .

The degrees of overlapping, $\mathcal{D}(A_i \circ \varrho, A_j \circ \varrho)$, may be made arbitrarily small.

2nd generalization of Mamdani-Assilian controller:

 $\sigma \colon [0,1] \to [c,1]$... increasing bijection (0 < c < 1).

Transformation of membership degrees in the output space \mathcal{Y} .

Output $Y \circ \sigma$ has to be transformed back by $\sigma^{[-1]}$,

so the inference rule is not compositional

(however, the computational complexity remains of the same order).

The degrees of equality, $\mathcal{E}(C_i \circ \sigma, C_j \circ \sigma)$, may be made arbitrarily large.

We may satisfy $\mathcal{D}(A_i \circ \varrho, A_j \circ \varrho) \leq \mathcal{E}(C_i \circ \sigma, C_j \circ \sigma)$.

Problem 1: $\mathcal{D}(X \circ \varrho, A_i \circ \varrho)$ becomes also small, causing "irrelevant outputs" and violating strong completeness.

Problem 2: Correctness and strong completeness are "almost contradictory" for the Mamdani–Assilian controller; sometimes they cannot be satisfied simultaneously for any compositional inference rule.

43/75

So far, we obtained a special case of the generalized FATI inference rule,

where
$$\pi_i(a,b) = \varrho(a) \wedge \sigma(b)$$
, $\beta = \max$, $\kappa(a,b) = \varrho(a) \wedge b$, $Q = \sup \circ \sigma^{[-1]}$.

However, we need:

3rd generalization of Mamdani-Assilian controller:

For the degree of firing in the inference rule, replace the degree of overlapping $\mathcal{D}(X, A_i)$ with the normalized value — degree of conditional firing

$$C_i(X) = \frac{\mathcal{D}(X, A_i)}{\max_j \mathcal{D}(X, A_j)}.$$

All the above requirements (in particular correctness and crisp correctness) are satisfied if [Moser, Navara 2002, Navara, Št'astný 2002]:

43/75

So far, we obtained a special case of the generalized FATI inference rule,

where
$$\pi_i(a,b) = \varrho(a) \wedge \sigma(b)$$
, $\beta = \max$, $\kappa(a,b) = \varrho(a) \wedge b$, $Q = \sup \circ \sigma^{[-1]}$.

However, we need:

3rd generalization of Mamdani–Assilian controller:

For the degree of firing in the inference rule, replace the degree of overlapping $\mathcal{D}(X, A_i)$ with the normalized value — degree of conditional firing

$$C_i(X) = \frac{\mathcal{D}(X, A_i)}{\max_j \mathcal{D}(X, A_j)}.$$

All the above requirements (in particular correctness and crisp correctness) are satisfied if [Moser, Navara 2002, Navara, Št'astný 2002]:

[C1] Each antecedent is normal.

43/75

So far, we obtained a special case of the generalized FATI inference rule,

where
$$\pi_i(a,b) = \varrho(a) \wedge \sigma(b)$$
, $\beta = \max$, $\kappa(a,b) = \varrho(a) \wedge b$, $Q = \sup \circ \sigma^{[-1]}$.

However, we need:

3rd generalization of Mamdani-Assilian controller:

For the degree of firing in the inference rule, replace the degree of overlapping $\mathcal{D}(X, A_i)$ with the normalized value — degree of conditional firing

$$C_i(X) = \frac{\mathcal{D}(X, A_i)}{\max_j \mathcal{D}(X, A_j)}.$$

All the above requirements (in particular correctness and crisp correctness) are satisfied if [Moser, Navara 2002, Navara, Št'astný 2002]:

- [C1] Each antecedent is normal.
- [C2] Each point of the input space belongs to the support of some antecedent.

43/75

So far, we obtained a special case of the generalized FATI inference rule, where $\sigma(a,b) = o(a) \wedge \sigma(b)$

where
$$\pi_i(a,b) = \varrho(a) \wedge \sigma(b)$$
, $\beta = \max$, $\kappa(a,b) = \varrho(a) \wedge b$, $Q = \sup \circ \sigma^{[-1]}$.

However, we need:

3rd generalization of Mamdani–Assilian controller:

For the degree of firing in the inference rule, replace the degree of overlapping $\mathcal{D}(X, A_i)$ with the normalized value — degree of conditional firing

$$C_i(X) = \frac{\mathcal{D}(X, A_i)}{\max_j \mathcal{D}(X, A_j)}.$$

All the above requirements (in particular correctness and crisp correctness) are satisfied if [Moser, Navara 2002, Navara, Št'astný 2002]:

- [C1] Each antecedent is normal.
- [C2] Each point of the input space belongs to the support of some antecedent.
- [C3] No consequent is covered by the maximum all other consequents.

43/75

So far, we obtained a special case of the generalized FATI inference rule,

where
$$\pi_i(a,b) = \varrho(a) \wedge \sigma(b)$$
, $\beta = \max$, $\kappa(a,b) = \varrho(a) \wedge b$, $Q = \sup \circ \sigma^{[-1]}$.

However, we need:

3rd generalization of Mamdani-Assilian controller:

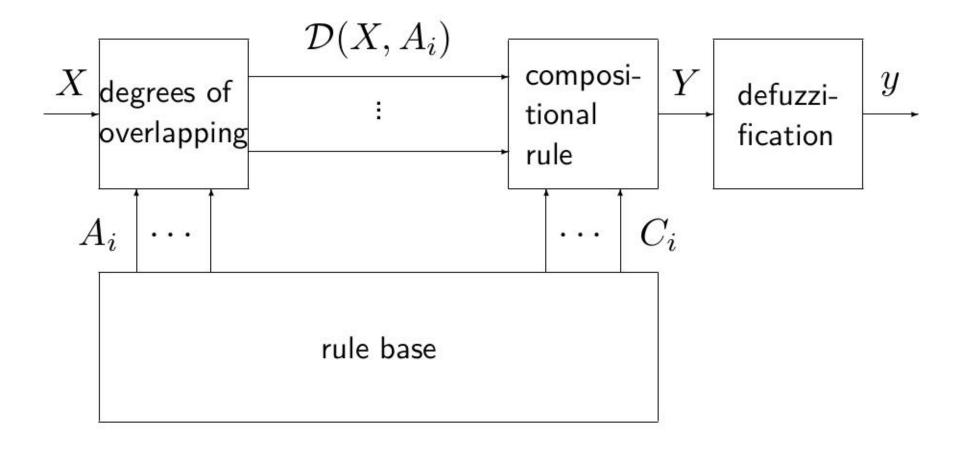
For the degree of firing in the inference rule, replace the degree of overlapping $\mathcal{D}(X, A_i)$ with the normalized value — degree of conditional firing

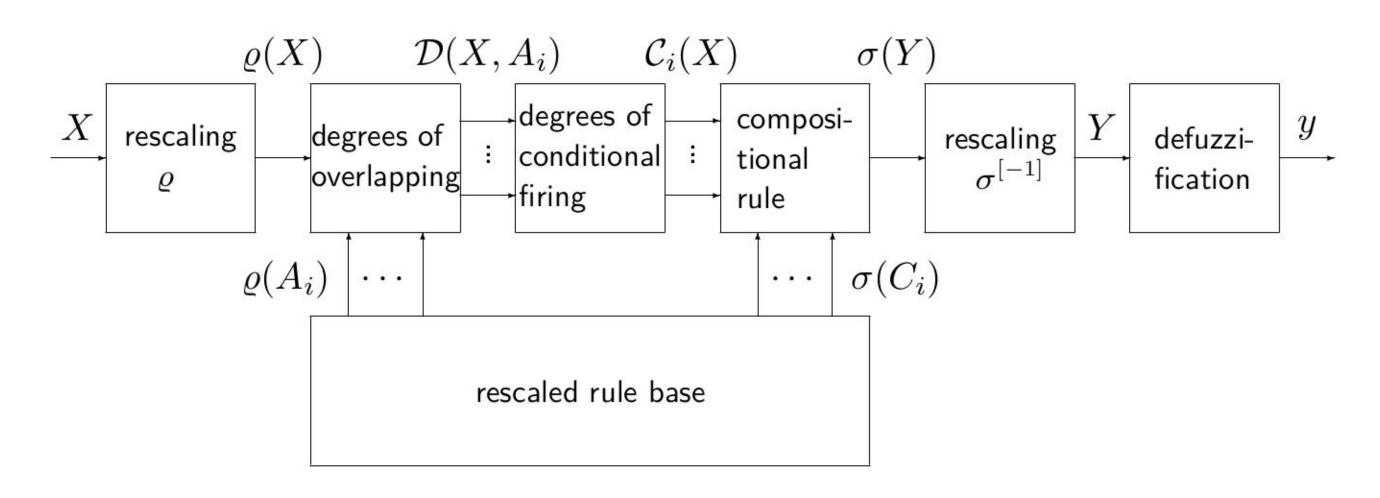
$$C_i(X) = \frac{\mathcal{D}(X, A_i)}{\max_j \mathcal{D}(X, A_j)}.$$

All the above requirements (in particular correctness and crisp correctness) are satisfied if [Moser, Navara 2002, Navara, Št'astný 2002]:

- [C1] Each antecedent is normal.
- [C2] Each point of the input space belongs to the support of some antecedent.
- [C3] No consequent is covered by the maximum all other consequents.
- [C4] "Weak disjointness of antecedents": $\exists c < 1 : A_i(x) \land A_j(x) < c$ whenever $i \neq j$.

Comparison of Mamdani–Assilian and CFR controller — block diagrams





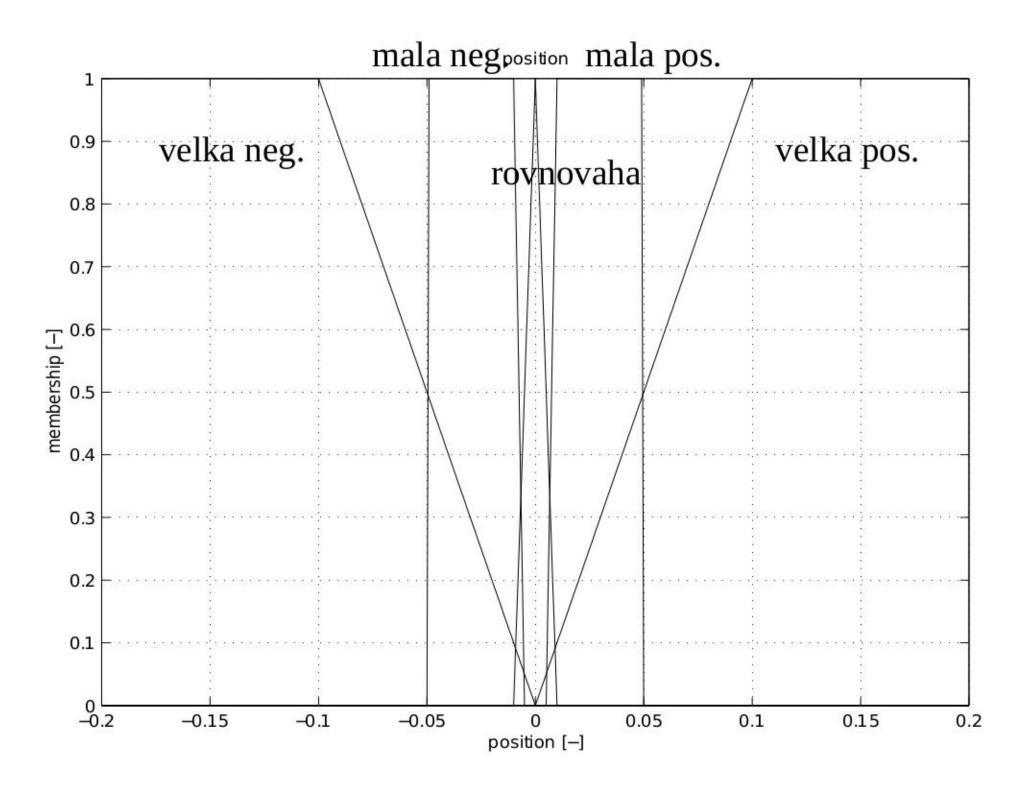
Sample problem: ball on beam (ball on plate)

We want to stabilize a position of a ball by leaning a plate on which it lies.

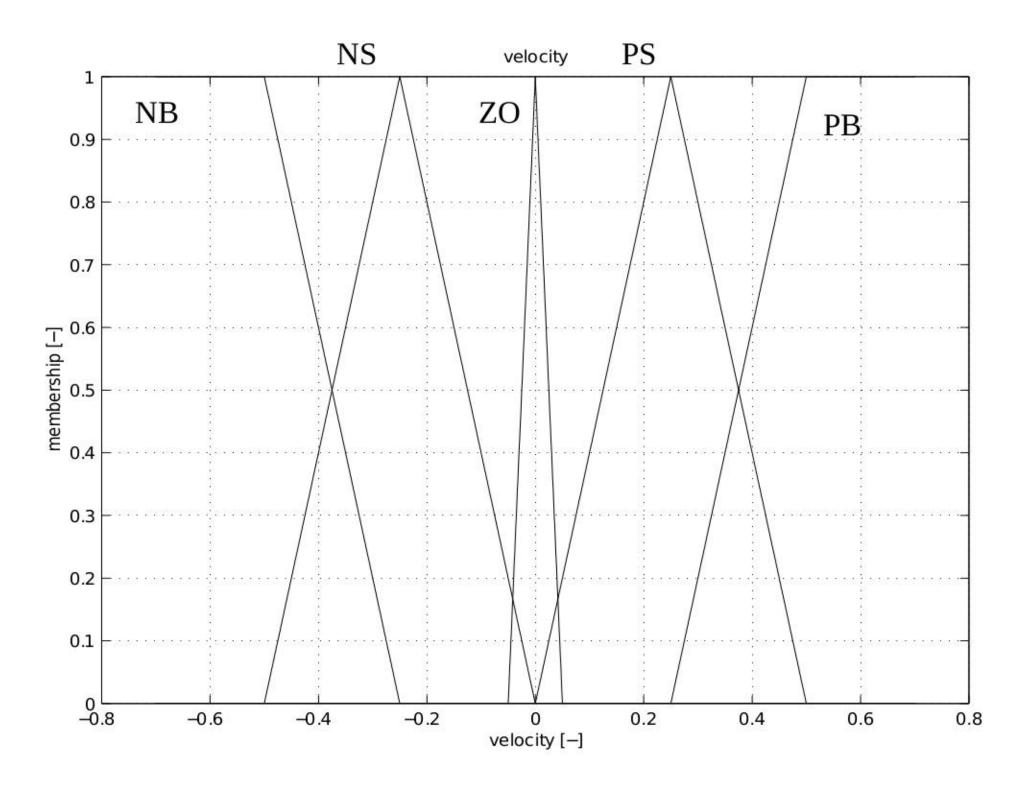
Static friction is considered (\Rightarrow non-linearity).

Solution due to [Št'astný 2001].

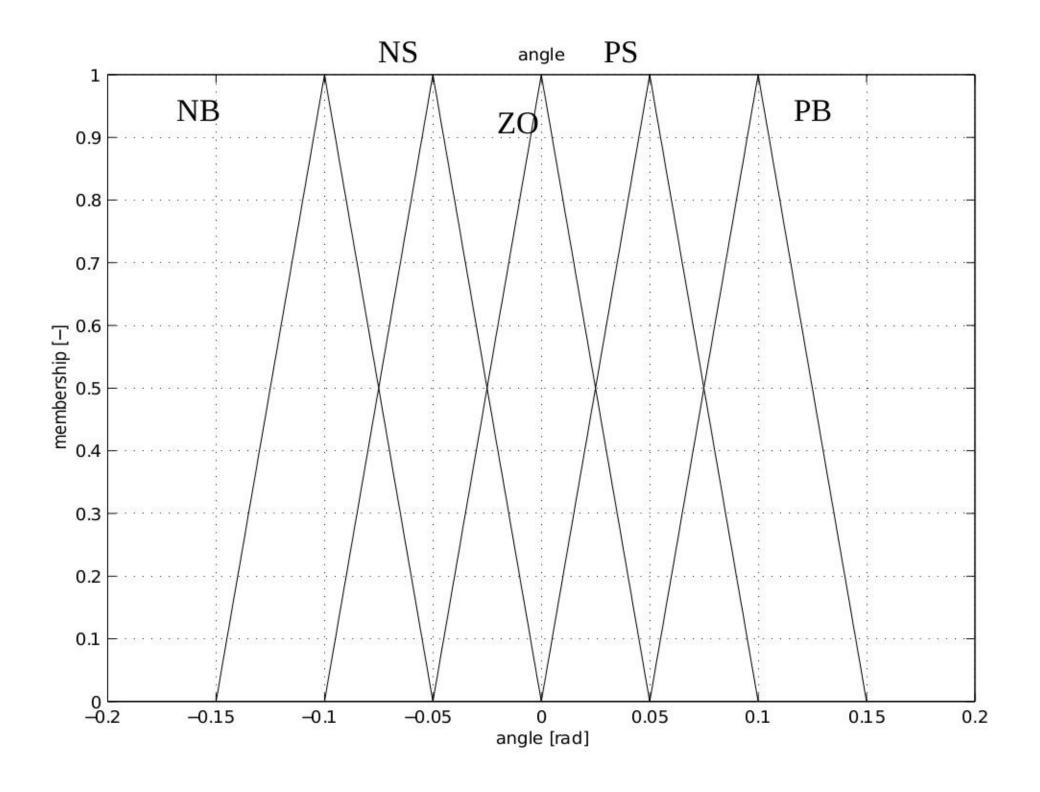
Example: Comparison of Mamdani–Assilian and CFR controller — position (premises)



Example: Comparison of Mamdani–Assilian and CFR controller — velocity (premises)



Example: Comparison of Mamdani–Assilian and CFR controller — angle (consequents)

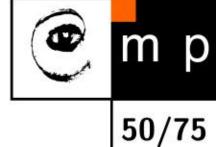


Example: Comparison of Mamdani–Assilian and CFR controller — rules

Angle:

position	NB	NS	ZO	PS	РВ
velocity					
NB	РВ	РΒ	РΒ	PB	PS
NS	РΒ	PS	PS	PS	ZO
ZO	РΒ	РΒ	ZO	NB	NB
PS	ZO	NS	NS	NS	NB
PB	NS	NB	NB	NB	NB

Example: Comparison of Mamdani–Assilian and CFR controller — quality of control



criterion	Mam. controller	CFR controller
maximum overshoot [m] σ	-	-
asymptotic value [m] y_{∞}	-0.0021	0.0012
number of extremes [-]	-	-
transient time [s]	3.56	3.05
cumulative quadratic error [ms]	0.0552	0.0569

Ball on plate, initial position +0.25, simulation time $5\,s$ — till steady state. Smaller values — better control. $T_{OUT} = 100\,ms$.

criterion	Mam. controller	CFR controller
maximum overshoot [m] σ	-	-
asymptotic value [m] y_{∞}	-0.0052	-0.0006
number of extremes [-]	-	
transient time [s]	18.06	17.22
cumulative quadratic error [ms]	23.12	22.34

Ball on plate, initial position +2.00, simulation time $20\,s$ — till steady state. Smaller values – better control. $T_{OUT}=100\,ms$.

Example: Comparison of Mamdani–Assilian and CFR controller — quality of control

51/75

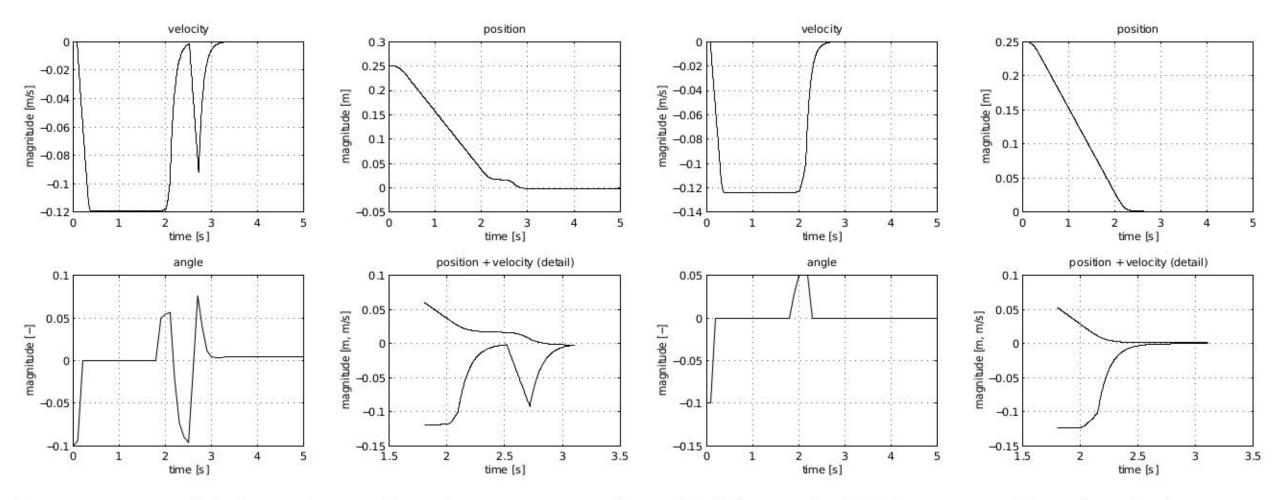
criterion	Mam. controller	CFR controller
maximum overshoot [m] σ	0.35	0.35
asymptotic value [m] y_{∞}	-0.0032	-0.0041
number of extremes [-]	1	1
transient time [s]	13.49	11.39
cumulative quadratic error [ms]	0.523	0.474

Ball on plate, initial speed $0.5ms^{-1}$, simulation time $15\,s$ — till steady state. Smaller values – better control. $T_{OUT} = 50\,ms$.

criterion	Mam. controller	CFR controller
maximum overshoot [m] σ	0.346	0.346
asymptotic value [m] y_{∞}	0.0051	0.0034
number of extremes [-]	1	1
transient time [s]	14.8	11.1
cumulative quadratic error [ms]	0.583	0.441

Ball on plate, initial speed $0.5ms^{-1}$, simulation time $15\,s$ — till steady state. Smaller values — better control. $T_{OUT}=5\,ms$.

Example: Comparison of Mamdani–Assilian and CFR controller — outputs



Typical outputs of Mamdani–Assilian controller (left) and CFR controller (right).

Problems of implementation of CFR controller

53/75

Software implementation: only three new blocks requiring a few lines of source code. The computational complexity slightly increases, but its order remains unchanged.

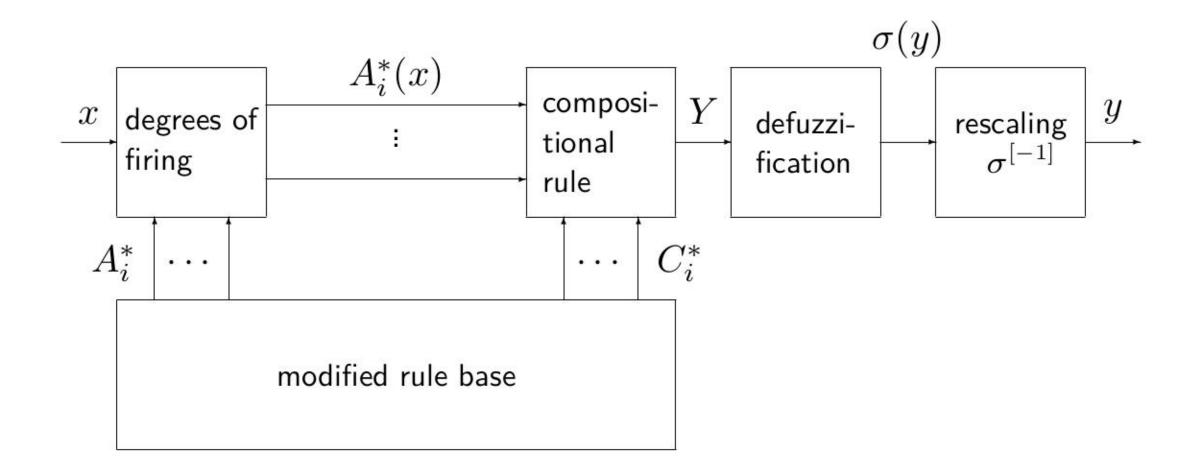
Hardware implementation: Requires to add an additional block inside the current structure, thus a totally new design of an integrated circuit - expensive!

Looking for a possibility to achieve the same control action using current fuzzy hardware and a modified rule base, we have found [Amato, Di Nola, Navara 2003]:

- 1. it is not possible to substitute the CFR controller in its full generality, but
- 2. this is possible for crisp input variables.

This case is still of much importance, because it covers most of applications; in fact, current fuzzy hardware works only with crisp inputs.

Hardware implementation of CFR controller



Conclusion

- We formulated well motivated axioms for fuzzy controllers (approximators). They cannot be satisfied by any controller using the classical compositional rule of inference (including the Mamdani–Assilian controller). Our generalized controller satisfies them under very general conditions.
- Practical experiments show that our controller allows to achieve better results with the same rule database.
- The computational efficiency is basically the same as that of the Mamdani–Assilian controller.
- New results allow to transform the rule base (automatically) so that the current fuzzy hardware could be used to implementation of our controller, although its performance could not be achieved by the original Mamdani–Assilian controller.

m p
56/75

Can be obtained by

asking an expert,

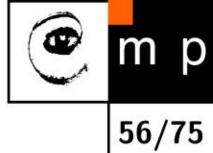
Conclusion

- We formulated well motivated axioms for fuzzy controllers (approximators). They cannot be satisfied by any controller using the classical compositional rule of inference (including the Mamdani–Assilian controller). Our generalized controller satisfies them under very general conditions.
- Practical experiments show that our controller allows to achieve better results with the same rule database.
- The computational efficiency is basically the same as that of the Mamdani–Assilian controller.
- New results allow to transform the rule base (automatically) so that the current fuzzy hardware could be used to implementation of our controller, although its performance could not be achieved by the original Mamdani–Assilian controller.

m p
56/75

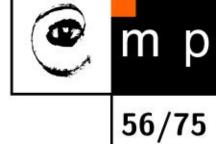
Can be obtained by

asking an expert,



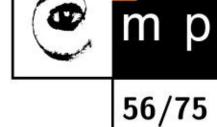
Can be obtained by

- asking an expert,
- observing him/her at work,



Can be obtained by

- asking an expert,
- observing him/her at work,
- combination with analysis of a model (if available),



Can be obtained by

- asking an expert,
- observing him/her at work,
- combination with analysis of a model (if available),
- a template for a similar problem.