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. Interaction or (local) correctness ([Thiele 1995]): Vj : ®(A,;) = C;.

The output of the controller should be the fuzzy union of the outputs of separate rules
(i.e., FATI=FITA);

this weaker form always holds for a Mamdani—Assilian controller;

see also [Lehmke, Reusch, Temme, Thiele 1998] for more general sufficient conditions
for this equality).
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Antecedents (one-dimensional) should be
® normal, Vi dx € X : A;(z) =1,
® continuous,

® symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the
standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the
neighbouring antecedents.
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Generalized Compositional Rule of Inference 2

[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998]
FITA principle (First Inference, Then Aggregation)

Rerai(z,y) = m (Ai(x): Cg(y)) :'

where  m;: [0,1]° — [0,1].

Perrai (X)) (y) = Qz{ﬁ?z (X(x):RFITAi(xa y)) Ea= X} ;

where  k;:[0,1]* = [0,1], @Q;: P([0,1]) — [0,1].

Y(y) — (I)FITA(X)(y) — @((I)FIThl(X)(y)a — (I)FITAn(X) (y)) ;

where «: [0,1]" — [0, 1].

Particular cases:
FITA Mamdani—Assilian controller:  m; = A,

FITA Residuum-based controller: m=—, Ki=/A, (;=sup, « = min.

(e

ks =/, C&=8Up, = max

31/75
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Remai(2,y) = mi(Ai(z), Ci(y)) ,
where  m;: [0,1]2 — [0,1].
Primai(X)(y) = Qi{ ki (X (2), Remai(z, ) |z € X'},
where  r;: [0,1]2 = [0,1],  Qi: P([0,1]) = [0,1].
Y (y) = Pema(X)(y) = a(Prrmar(X) (1), - -+ Perman(X)(y))

where  «: [0,1]" — |0, 1].

Particular cases:
FITA Mamdani—Assilian controller: m, = A, k;=A, Q; =sup, « = max.
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[Thiele 1995], [Lehmke, Reusch, Temme, Thiele 1998]
FATI principle (First Aggregation, Then Inference)

Reani(,y) = B(’”l(Al(x): Cl(y))j = 2 p W1 (An(x): Cn(y))) )

where m;:[0,1]* — [0,1], B3:][0,1]™ — [0,1].

Y(y) = Pean(X)(y) = Q{H(X(x)a Reari(z,y)) | © € X},

where k:[0,1]* = [0,1], @Q: P([0,1]) = [0,1] (almost arbitrary operations).

Particular cases:

Mamdani—-Assilian controller: m, = A, [ =max, kK=A, = sup.

Residuum-based controller: m=—, [ =min, K=A, @ = sup.

(@)
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Comparison of residuum-based and Mamdani—Assilian
controllers
Continuity:
Rges only for A nilpotent,

Rma always.

Computational efficiency:

Dres(X)(y) = sup (X (z) A min(4y(z) > Ci(y)) )
requires three nested cycles (over X and ) and over the number of rules).

Dua(X)(y) = sup( X () A max(Ai(z) A Ci(y)))

= max Slip (X(x) A Ai(x) /\ Cﬁ,(y))

= max(D(X, 4i) A Ci(y))

1

(e

28/75

D(X,A;) =sup(X(z) A A;(x)) ... the degree of overlapping (non-disjointness),

here equal to the degree of firing (applicability).

Tequires two nested cycles (over X' and the number of rules) resulting in real numbers

D(X, A;), i =1,...,n; then two nested cycles (over ) and the number of rules).

duma can be computed more efficiently (approx. #Y/2-times faster).
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. Interaction or (local) correctness ([Thiele 1995]): Vj : ®(A,;) = C;.

The output of the controller should be the fuzzy union of the outputs of separate rules
(i.e., FATI=FITA);

this weaker form always holds for a Mamdani—Assilian controller;

see also [Lehmke, Reusch, Temme, Thiele 1998] for more general sufficient conditions
for this equality).
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Antecedents (one-dimensional) should be
® normal, Vi dx € X : A;(z) =1,
® continuous,

® symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the
standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the
neighbouring antecedents.
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¢ Strong completeness: V normal X € F(X) : ®(X) £ () C;, where the fuzzy

intersection is standard (computed using min).
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Requirements on the rule base [Moser, Navara 2002]

® Local correctness (interaction): Vj : ®(

Aj) =Cj.
¢ Strong completeness: V normal X € f(X) where the fuzzy

intersection is standard (computed using min).
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Requirements on the rule base [Moser, Navara 2002]

¢ Local correctness (interaction): Vj: ®(A4;) = C;.
¢ Strong completeness: V normal X € F(X) : ®(X) £ () C;, where the fuzzy
intersection is standard (computed using min).

® Weak interpolation property: ®(X) is in the convex hull of all C; with 7 such that
Supp A; N Supp X # 0.
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Antecedents (one-dimensional) should be
® normal, Vi dx € X : A;(z) =1,
® continuous,

® symmetric (when possible, usually not at the borders of the input space!).

The recommended degree of overlapping of neighbouring antecedents (computed using the
standard t-norm, min) is 0.5.

The recommended endpoints of the support of an antecedent are the peeks of the
neighbouring antecedents.
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Completeness is required, because in any situation we need at least one firing rule.

Nevertheless, non-completeness is sometimes tolerated for the following reasons:

¢ In expert systems; “l don't know" could be a legitimate answer (of an expert system,
not of a pilot!).

® The input is impossible (then do not include it in the input space!).
® The input values are fuzzified so that they always overlap with some antecedent.

® The sparse database is used for interpolation [Koczy et al. 1997].

¢ Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional “else rule”
‘Amato, Di Nola, Navara 2003].

t is treated differently w.r.t. other requirements.

n any case, it assumes that we assign a meaning of “no action".

the output variable has to be defined always.
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Omitting rules for some situations is motivated by the attempt to reduce the number of
rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic

variables.
This does not obviously mean that the antecedents are not complete; the case may be

covered by neighbouring rules, although with a smaller degree of firing.
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When Vj : ®(A;) = Ajo Rua = C; 7 (A system of fuzzy relational equations for a

fuzzy relation Rya.)

For Mamdani—Assilian controller:
Theorem: Vj : ®uya(4;) > C;.

Proof: X := A,
D(X,A;) =D(A4;,A;) =1 (due to normality),
Pua(4;)(y) = max(D(A;, Ai) A Ci(y)) = DA, 4;) ACj(y) = Cj(y) .

1
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Theorem [de Baets 1996, Perfilieva, Tonis 1997]: (‘v’j : Pya(4)) = Cj) itf
(Vi Vj:D(A; Aj) < Z(C, Cj)) '
where Z(C;, C;) = inf(Ci(y) — 5 (y))

7 .

(the implication — has to be the residuum of A).

Instead of I(C;,C;) we may use £(C;,C;) = inf(C@;(y) S Cj(y))
7 .

(degree of indistinguishability (equality)),
where a <> 8 =min(a — 5,86 > a) = (a—= B) A (8 — a).

Proof: The negation of the left-hand side is

37y - Pmal45)(y) > C5(y),

35 3y Fx: Aj(z) A Rua(z,y) > C5(y),

3i 3j Jy J: Aj(2) A Au(z) ACily) > Cily),
Ji 37 Jy o Aj(x) A Ai(z) > Ci(y) = C5(y),

== Slip(Aj(:E) A A;(z))

V

s
s
=
$3
S
K3

<
—

which is the negation of the right-hand side.



Correctness of Mamdani—Assilian controller

Theorem [de Baets 1996, Perfilieva, Tonis 1997]: ( : Pua(4,) = C;) iff
(Vi Vi DAL AN < T(C;. C,

where} Z(C;, C;) = inf (Ci(y) — Cj (1))

(the implication — has to be the residuum of A).

Instead of I(C;,C;) we may uge £(C;, C;) = if(C?;(y) o Cj(y))

(degree of indistinguishability (equality)),
where a <> = min(a — 5,8 — a) = (Od—>5) (5—“95)

Proof: The negation of the left-hand side is

37 Jy : Pma(A4y)(y) > Cj(y),
35 3y Fx: Aj(z) A Rua(z,y) > C5(y),
3i 3j Jy Fo : Aj(x) A Ai(z) ACily) > Cily),
3i 3 Jy 3z : Aj(z) A Ai(z) > Cily) = Ci(y),
33 35 sgp(Aj(:c) A Ai(x) > 1I;f(0i(y) = Ci(y))

which is the negation of the right-hand side.

(e

38/75




Ve
Correctness of Mamdani—Assilian controller @ .
[Moser, Navara 1999]

39/75

If A\ has no zero divisors (e.g., the minimum or product), then D(A;, A;) < E(C;,C,) is

sat.isfied in two situations:
¢ £(C;,C5) > 0; then Supp C; = Supp C};, which is rather unusual,

¢ £(C;,Cj) =0; then D(A;, A;) =0, Supp A; N Supp A; = (); for continuous degrees of
membership, strong completeness is violated.
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Theorem: Vj : ®ges(A;) < Cj.
Proof: X := A,

(I)RES(AJ)(?J) — SUP(AJ' (117) /\ m_in(Ai(x) _> Cz(y)))

T 1

sup(4;(z) A (A;(x) = Cj(y))) < Ci(y).

€I

A

Theorem: If there is a fuzzy relation R such that Vj : A; 0 R = (), then also Rges satisfies

these equalities (and it is the largest solution).

Proof: Vj Vx Vy :

Azl @) A R(z,y) < Cj(y)
R(z,y) < Ajz)—C5(y)
R(z,y) < min(Ai(z) = Ci(y)) = Rees(,y),
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Completeness of the rule base

Omitting rules for some situations is motivated by the attempt to reduce the number of
rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic

variables.
This does not obviously mean that the antecedents are not complete; the case may be

covered by neighbouring rules, although with a smaller degree of firing.
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Completeness of the rule base

Completeness is required, because in any situation we need at least one firing rule.

Nevertheless, non-completeness is sometimes tolerated for the following reasons:

¢ In expert systems; “l don't know" could be a legitimate answer (of an expert system,
not of a pilot!).

® The input is impossible (then do not include it in the input space!).
® The input values are fuzzified so that they always overlap with some antecedent.

® The sparse database is used for interpolation [Koczy et al. 1997].

® Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional “else rule”
‘Amato, Di Nola, Navara 2003].

t is treated differently w.r.t. other requirements.

n any case, it assumes that we assign a meaning of “no action".

the output variable has to be defined always.
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Requirements on the rule base [Moser, Navara 2002]

¢ Local correctness (interaction): Vj: ®(A4;) = C;.
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intersection is standard (computed using min).
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Correctness of Mamdani—Assilian controller @ o
[Moser, Navara 1999]

39/75

If A has no zero divisors\(e.g., the minimum or product), then D(A;, A;) < E(C;, C5) is
satistied in two situations:
E(C;, C;) > 0; then Supp C; = Supp C;, which is rather unusual,

E(C;,C;) =10, then D(A;, A;) =0, Supp A; N Supp A, = ); for continuous degrees of

membership, strong completeness is violated.

d C,

A A,
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If A\ has no zero divisors (e.g., the minimum or product), then D(A;, A;) < E(C;,C,) is

sat.isfied in two situations:
¢ £(C;,C5) > 0; then Supp C; = Supp C;, which is rather unusual,

¢ £(C;,C;) =0; then D(A;, A;) =0, Supp A; N Supp A; = (); for continuous degrees of
membership, strong completeness is violated.

This problem does not occur if A has zero divisors (e.g., the tukasiewicz t-norm).

However, this choice may easily violate the strong completeness [Moser, Navara 1999].




Correctness of residuum-based controller

40/75

Theorem: Vj : ®ges(A;) < Cj.
Proof: X := A,

(I)RES(AJ)(?J) — SUP(AJ' (117) /\ m_in(Ai(x) _> Cz(y)))

T 1

sup(4;(z) A (A;(x) = Cj(y))) < Ci(y).

€I

A

Theorem: If there is a fuzzy relation R such that Vj : A; 0 R = (), then also Rges satisfies

these equalities (and it is the largest solution).

Proof: Vj Vx Vy :

Azl @) A R(z,y) < Cj(y)
R(z,y) < Ajz)—C5(y)
R(z,y) < min(Ai(z) = Ci(y)) = Rees(,y),



What happens if correctness is violated? @ 8

Nothing serious, this is usually accepted and possibly compensated during the tuning. 41/75

However, it causes a distorted interpretation of (possibly good) control rules.
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An alternative: CFR (Controller with conditionally firing

L

rules) [Moser, Navara 2002]

1st generalization of Mamdani—Assilian controller:

0:10,1] — [0,1] ... increasing bijection, e.g., o(t) =t", r > 1, or piecewise linear.

Transformation of membership degrees in the input space X'.
The degrees of overlapping, D(A; 0 0, A; o p), may be made arbitrarily small.

2nd generalization of Mamdani—Assilian controller:

o:[0,1] = [e,1] ... increasing bijection

(0<ec< 1)

Transformation of membership degrees in the output space V.
Output Y o o has to be transformed back by o!=1/,

so the inference rule is not compositional

(however, the computational complexity remains of the same order).

The degrees of equality, £(C; 0 0,C; 0 o), may be made arbitrarily large.
We may satisfy D(A; 0 9, Aj0p0) < E(Cio00,Cj00).

42/75

Problem 1: D(X o p, A; o p) becomes also small, causing “irrelevant outputs" and violating

strong completeness.

Problem 2: Correctness and strong completeness are “almost contradictory” for the

Mamdani—Assilian controller; sometimes they cannot be satisfied simultaneously for any

compositional inference rule.
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rules)
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So far, we obtained a special case of the generalized FATI inference rule,
where  7;(a,b) = o(a) Ao(b), B =max, k(a,b)=p(a)Ab, Q=supocl~1l,

However, we need:

3rd generalization of Mamdani—Assilian controller:

For the degree of firing in the inference rule, replace the degree of overlapping D(X, A;)
with the normalized value — degree of conditional firing

B max D(X, A;)
J

Ci(X)

All the above requirements (in particular correctness and crisp correctness) are satisfied if
[Moser, Navara 2002, Navara, St'astny 2002]:
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So far, we obtained a special case of the generalized FATI inference rule,
where  7;(a,b) = o(a) Ao(b), B =max, k(a,b)=p(a)Ab, Q=supocl™1l,

However, we need:

3rd generalization of Mamdani—Assilian controller:
For the degree of firing in the inference rule, replace the degree of overlapping D(X, A;)
with the normalized value — degree of conditional firing

B max D(X, A;)
J

Ci(X)

All the above requirements (in particular correctness and crisp correctness) are satisfied if
[Moser, Navara 2002, Navara, St'astny 2002]:

'C1] Each antecedent is normal.
C2] Each point of the input space belongs to the support of some antecedent.

'C3] No consequent is covered by the maximum all other consequents.

C4] “Weak disjointness of antecedents": Jc < 1: A;(x) A A;j(x) < ¢ whenever i # j.




Comparison of Mamdani—Assilian and CFR controller —
block diagrams

(®

D(X, A;)
X degrees of c-omp05|— Y | defuzzi-
- . tional < I
overlapping fication
" rule
A; Cs;
rule base
o(X) D(X, A;) Ci(X) o(Y)
X rescaling degrees of | . ,degrge.s of ] c.omposi- rescaling
— verlanping conditional tional . [—1]
e PPINg firing " rule 7
o(A;) o (C})

rescaled rule base

- defuzzi-

fication

44/75




(®

Sample problem: ball on beam (ball on plate)

45/75

We want to stabilize a position of a ball by leaning a plate on which it lies.
Static friction is considered (= non-linearity).

Solution due to [St'astny 2001].




Example: Comparison of Mamdani—Assilian and CFR
controller — position (premises)

0.9

membership [-]
o o o o o o
L $a Ln o | o

o
N

0.1

mala negpositon mala pos.

(®

""" Velka neg.

"

__________ velka é‘p'os; ______

-0.05 0

position [—]

0.05 0.1

;‘
0.15 0.2
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Example: Comparison of Mamdani—Assilian and CFR
controller — velocity (premises)

(@)

NS velocity PS

0.9

=
co
|

=
-q
[

o
o
|

membership [-]
o o
e Ln

I I

Q
w
|

Q2 =

QL =

-0.8 ; : : 0
velocity [—]
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Example: Comparison of Mamdani—Assilian and CFR @ .
controller — angle (consequents)

48/75

NS angle PS

0.9

membership [-]
o = o o o
Fa Ln h =] co
| [ I I I

o
w
|

Q2 =

QL =

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 015 2
angle [rad]



Example: Comparison of Mamdani—Assilian and CFR
controller — rules

(®

Angle:
position | NB | NS | ZO | PS | PB
velocity

NB PB | PB | PB | PB | PS
NS PB|PS|PS|PS|ZO
JA® PB | PB|ZO | NB | NB
PS ZO | NS | NS | NS | NB
PB NS | NB | NB | NB | NB

49/75
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Example: Comparison of Mamdani—Assilian and CFR
controller — quality of control

50/75
criterion Mam. controller | CFR controller
maximum overshoot [m] o - -
asymptotic value [m] 4. -0.0021 0.0012
number of extremes [-] - -
transient time [s] 3.56 3.05
cumulative quadratic error [ms] 0.0552 0.0569

Ball on plate, initial position +0.25, simulation time 5 s — till steady state. Smaller values —
better control. Ty = 100 ms.

criterion Mam. controller | CFR controller
maximum overshoot [m] o - -
asymptotic value [m] 4. -0.0052 -0.0006
number of extremes [-] - -
transient time [s] 18.06 17.22
cumulative quadratic error [ms] 23.12 22.34

Ball on plate, initial position 4+2.00, simulation time 20 s — till steady state. Smaller values
— better control. Ty = 100 ms.




Example: Comparison of Mamdani—Assilian and CFR

controller — quality of control

(e

criterion Mam. controller | CFR controller
maximum overshoot [m] o 0.35 0.35
asymptotic value [m] 4. -0.0032 -0.0041
number of extremes [-] 1 1
transient time [s] 13.49 11.39
cumulative quadratic error [ms] 0.523 0.474

Ball on plate, initial speed 0.5ms™
— better control. Ty = 50 ms.

1

criterion Mam. controller | CFR controller
maximum overshoot [m] o 0.346 0.346
asymptotic value [m] 4. 0.0051 0.0034
number of extremes [-] 1 1
transient time [s| 14.8 11.1
cumulative quadratic error [ms] 0.583 0.441

51/75

, simulation time 15 s — till steady state. Smaller values

Ball on plate, initial speed 0.5ms !, simulation time 15 s — till steady state. Smaller values

— better control. Ty = 5 ms.



Example: Comparison of Mamdani—Assilian and CFR
controller — outputs

52/75

magnitude [m/s]
s ob
= [
(=g’ £

magnitude [m]

S

=

oo

maanitude [m]

0 1 5
time [s] time [5]
angle position +wvelocity (detail) angle posiion +wvelocity (detail)
0.1 01 T T T 0.05 0.1 T T T
— 0.05 : / \ : — 0.05
0.05 £ 0 : ; Eu
= 0 = .05
& E .05 & g —.05
I = - a = 5
= = E =]
-0.05 g -1 g
’ 01 ’ 0.1
01 -0.15 : : : —015 ' ' ' ' —0.15 : :
0 1 2 3 4 5 1.5 2 2.5 3 3.5 0 1 2 3 4 5 1.5 2 25 3.5
time [5] time [s] time [s] time [s]

Typical outputs of Mamdani—Assilian controller (left) and CFR controller (right).



‘@ .
Problems of implementation of CFR controller -
53/75

Software implementation: only three new blocks requiring a few lines of source code.
The computational complexity slightly increases, but its order remains unchanged.

Hardware implementation: Requires to add an additional block inside the current
structure, thus a totally new design of an integrated circuit - expensive!

Looking for a possibility to achieve the same control action using current fuzzy hardware and
a modified rule base, we have found [Amato, Di Nola, Navara 2003]:

1. it is not possible to substitute the CFR controller in its full generality, but

2. this is possible for crisp input variables.

This case is still of much importance, because it covers most of applications;
in fact, current fuzzy hardware works only with crisp inputs.



Hardware implementation of CFR controller

54/75|
o(y)
A:(T) 4 COMPpOSI-
L | degrees of E tion;:?l Y__ defuzzi- rescaling Y
firing 1 rule fication ol
A e o || R

modified rule base




JEN

. Z
Conclusion -
55/75

We formulated well motivated axioms for fuzzy controllers (approximators). They
cannot be satisfied by any controller using the classical compositional rule of inference

(including the Mamdani—Assilian controller). Our generalized controller satisfies them
under very general conditions.

Practical experiments show that our controller allows to achieve better results with the
same rule database.

The computational efficiency is basically the same as that of the Mamdani—Assilian
controller.

New results allow to transform the rule base (automatically) so that the current fuzzy
hardware could be used to implementation of our controller, although its performance
could not be achieved by the original Mamdani—Assilian controller.
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Initial rule base

56/75

Can be obtained by
¢ asking an expert,
observing him /her at work,

4
¢ combination with analysis of a model (if available),

a template for a similar problem.



