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WLOG, we choose for B a formula with the shortest possible proof; its shortest

proof must be of the following form:
D;

MP(D?;, DJ) : Dy =B

forer < g <morj<i<m.
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Proof of T H A — B:
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D
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INTERPLAY OF SYNTAX AND SEMANTICS OF CLASSICAL LOGIC

Weak soundness

Strong soundness

Weak completeness

Strong completeness

Each provable formula is a tautology, i.e., if = A, then

For any theory 7, if T H A, then T = A.

Each tautology is provable, i.e., if = A, then - A.

For any finite theory 7T, if T

— A, then 7 - A.
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BASIC LOGIC (BL)
AS AN EXAMPLE OF A MANY-VALUED PROPOSITIONAL LOGIC

SYNTAX OF BASIC LOGIC 1

A ... countable set of propositional variables
L ={—,0,A} ... the set of logical connectives:

— ... (binary) implication
O ... (nulary) false
A ... (binary) conjunction (NEW)

Formulas constructed as usual

Derived connectives:

—A = A — 0 ... (unary) negation

1=-0=0—0 ... (nulary) true

A< B=(A— B)AN(B — A) ... (binary) equivalence
ApAB=AN(A— B)

AVB=((A— B)—= B)p((B— A) = A)
no AV B in general
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SEMANTICS OF BASIC LOGIC In general: a BlL-algebra, here only

Standard semantics the set of truth values ... [0, 1]
A ... continuous fuzzy conjunction A

— ... residuum — of A |

0..0 -

Even the standard semantics is not unique, it depends on the choice of the contin-
uous fuzzy conjunction.

Interpretation of derived connectives:

=l where ~aa = a — 0

1...1

e T where a <> 8 = (o — B) A (B8 — «)

é\ /S\ = min

S 5

V ... V=max

Exercise Verify that the interpretation of Qs Vs iIndependent of the choice of

the fuzzy conjunction.
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An evaluation (truth assignment) can be arbitrarily chosen on propositional vari-
ables, then it extends uniquely to all formulas.

Conjunction A is introduced separately, as its semantics cannot be derived from

the implication (as an expression using the other operations).

There are different generalizations of the notion of tautology:
1-tautology is a formula A which is always evaluated to 1 (by all possible eval-
uations with values with any BlL-algebra, in particular, for any continuous fuzzy

conjunction as an interpretation of A and its residuum as an interpretation of —)

Notation: = A

Moreover, for any theory 7T,
7T = A means that ¢(A) = 1 for each evaluation such that VB € T : e¢(B) = 1.
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SYNTAX OF BASIC LOGIC 2

Logical axioms

(A1)
(A2)
(A3)
(A4)
(A5a)
(A5b)
(A6)
(A7)

Deduction rule: Modus Ponens MP(A, A — B):

(A—-B)—-(B—C)—(A—C(C))
ANB — A

ANB —-BANA
AN(A— B) > BA(B— A)
(A—-(B—-C))—=(ANB —C)
(ANB—-C)— (A— (B—C))
(A—-B)—»C)—=((B—A)—>C)—C)
0—- A

AL A— B

B

Theory = set of formulas (special axioms)

Proofs and provable formulas (=theorems) are defined as usual



Notation: A, TEFHA

Example 1 (C1) A— (B— A) is provable in BL:

(A2): Di=AANB— A
(A5b),C:=A: Dr,=(AANB—A) > (A— (B— A))
MP(D1,D3): D3=A—(B— A)

= (C1) can be added to axioms of BL

Proposition 1 Consequence of (Al):

{A—+B, B—>C}FA—-C

= we can add a deduction rule
A— B, B—C

A—C

TI(A — B, B— C): (transitivity of implication)
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(A5a)
(A5b)
(A6)
(A7)

Deduction rule: Modus Ponens MP(A, A — B):

(A—-B)—-(B—C)—(A—C(C))
ANB — A

ANB —-BANA
AN(A— B) > BA(B— A)
(A—-(B—-C))—=(ANB —C)
(ANB—-C)— (A— (B—C))
(A—-B)—»C)—=((B—A)—>C)—C)
0—- A

AL A— B

B

Theory = set of formulas (special axioms)

Proofs and provable formulas (=theorems) are defined as usual



Notation: A, TEFHA

Example 1 (C1) A— (B— A) is provable in BL:

(A2): Di=AANB— A
(A5b),C:=A: Dr,=(AANB—A) > (A— (B— A))
MP(D1,D3): D3=A—(B— A)

= (C1) can be added to axioms of BL
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A— B, B—C
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SYNTAX OF BASIC LOGIC 2

Logical axioms

(Al) (A—-B)—»(B—-C)—(A—0))

(A2) AANB— A

(A3) AAB—BAA

(AMM) ANA—B)—BA(B—A)

(Aba) (A—-(B—C))—=(ANB — ()

(AbBb) (AANB—-C)—(A— (B—C))

(A6) ((A—-B)—-C)—=(((B—A) —-C)—C)
(A7) 00— A

AL A— B

Deduction rule: Modus Ponens MP(A, A — B): I

Theory = set of formulas (special axioms)

Proofs and provable formulas (=theorems) are defined as usual



Notation: A, TEFHA

Example 1 (C1) A— (B— A) is provable in BL:

(A2): Di=AANB— A
(A5b),C:=A: Dr,=(AANB—A) > (A— (B— A))
MP(D1,D3): D3=A—(B— A)

= (C1) can be added to axioms of BL

Proposition 1 Consequence of (Al):

{A—+B, B—>C}FA—-C

= we can add a deduction rule
A— B, B—C

A—C

TI(A — B, B— C): (transitivity of implication)



Notation: = A, THA

Example 1 (C1) A— (B— A) is provable in BL:

(A2): Dy
(A5b),C:=A: Dry=(AANB—- A)}I>(A— (B— A)

MP(D1,D3): D3=A— (B— A)

= (C1) can be added to axioms of BL

Proposition 1 Consequence of (Al):

e | e T

= we can add a deduction rule

A— B, B
TI(A— B, B— C): _>A?—>C_>C

A S (B> —>(A>0)

e : (R C)—= (A= 9
MP: A=C

(transitivity of implication)



Example 2 F(A—-(B—-C))—>(B—(A—C(C))

(Exchange rule, also called “exchange axiom™)

(A1) A:= B A A,
B:=ANB: Di=(BANA—-AANB)—- ((AANB—=C)— (BNA—())
(AB3))A:=:B: D,=BANA—ANAB
MP(Dy,D3): D3=(AAB—=C)—(BANA—C)
(Aba): Dy=(A—->(B—-C)—>(AANB —(C)
(ABb) A:=:B: Ds=(BANA—-(C)—(B—(A—0))
TI(Dg,D3): Dg=(A— (B—C))—(BNA—C)
T(Dg,Ds): D;y=(A—(B—>C))—(B—(A—C(C))



Example 3 FA— A

For brevity, let B denote a provable formula, e.g., axiom (Al).

(Al): D;=B

Ex.2,C:=A: Dy=(A—=>(B—>A)—>(B—>(A—A))
(Cl): D3=A—(B— A)

MP(Ds3, D) : Dyg=B—(A— A)

MP(D1,D4): Ds=A— A
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TI(Dg,D3): Dg=(A— (B—C))—(BNA—C)
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I~ Xy

Example 2 I—‘(A — (B — O))|—>‘(B — (A — C)j

(Exchange rule, also called “exchange axiom™)

(Al) A:=|BANA
B = :
(A3) A :=: B:
MP(Dy, D3)
(Aba) :

(Abb) A :=: B :
TI(Dg, D3) :
TI(Dg, Ds) :

; |~ [Ars 02
D23 [BR A= 0) - (B (1 0) |

Dg=(A—>(B—-C)) - (BANA—=C)

D+ :‘(A — (B — C))\—> {B — (A — C)]

/_\

1->1TL=5% =4
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Example 3 FA— A

For brevity, let B denote a provable formula, e.g., axiom (Al).

(Al): D;=B

Ex.2,C:=A: Dy=(A—=>(B—>A)—>(B—>(A—A))
(Cl): D3=A—(B— A)

MP(Ds3, D) : Dyg=B—(A— A)

MP(D1,D4): Ds=A— A



Example 3 FA— A

For brevity, let B denote a provable formula, e.g., axiom (Al).

(A1) :

Exe. 2,6 = Az
(C1):
MP(Ds3, D) :
MP(D1, Dy) :




