Representations of a fuzzy set

Horizontal representation: system of cuts
Vertical representation: membership function

Conversion from the horizontal to vertical representation:

pa(z) =sup{a €[0,1]: z € Ra(a)}.

Theorem: (the second representation theorem) Let A € F(X). Then

HA = SUPp G UR 4(a) = Sup QO UR 4 ()
acl0,1] aERange( A)

where the supremum is computed pointwise, i.e.,

pa(®) = Sup @ pRr,)(T)-
acRange(A)
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Classical definition
ACB < Vxe€A: z€B
cannot be used, because we cannot write x € A, x € B:
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Classical definition
ACB < VxecA: x€B
cannot be used, because we cannot write x € A, x € B:

However, we can write
ACB <= Vx e X: pa(lz)<pp(r) < pa < up.

For A, B € F(X):
ACB <<= Vxe X: palx) uplr) < pua < up <
Va € [0,1] : Ra(a) C Rp(a).

Proof of the last equivalence:

‘=" Assume pa < up, T € Ra(a),

a<pa(xr) <pp(x), € Rp(a), ie, Ra(a) C Rp(a).
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Classical definition
ACB < VxecA: x€B
cannot be used, because we cannot write x € A, x € B:

However, we can write
ACB < Vzxe X: ualr) fuplx) < ua < up.

For A, B € F(X):
ACB <<= Vxe X: palzx) L uplr) < pua < up <
Va € [0,1] : Ra(a) C Rp(a).

Proof of the last equivalence:
'=": Assume pa < up, r € Ra(a),
a < pa(zr) <pp(x), v € Rp(a), ie, Ra(a) C Rp(a).

‘<" Assume Va € [0,1] : Ra(a) C Rp(a),

pa(z) =sup{a €[0,1]: z € Ra(a)} <sup{a €0,1]: z € Rp(a)} = up(z).
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A property P of fuzzy sets Ay,..., A, maps arguments Aq,..., A, to a truth value
P(Ay,...,A,) € {0,1} (“predicate”).

Property P of of fuzzy sets is called
e cutworthy if

P(Ay,...,An) = Mae (0,1 : P(Ra,(a),...,Ra,(a))),
e cut-consistent if

P(Ay,...,Ay) <= Va € (0,1] : P(Ra,(a),...,Ra,(a))).

(O-cuts are ignored intentionally)

Examples:

Inclusion is cut-consistent.

Strong normality, Jx € X : pa(x) = 1, is cut-consistent.

Crispness is cutworthy, but not cut-consistent.
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P(Ay,...,Ay) <= Va € (0,1] : P(Ra,(a),...,Ra,(a))).

e cut-consistent if

(0-cuts are ignored intentionally)
@ e}

Examples:

Inclusion is cut-consistent.

Strong normality, Jx € X : pa(x) = 1, is cut-consistent.

Crispness is cutworthy, but not cut-consistent.
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propositional
set operations operations formula
P(X)—>PX) | 2:{0,1} = {0,1} | A ={zeX: a(zecA)}
N:P(X)2=>PX) | A:{0,1}* 5 {0,1} | AnNB={z€X: (zx€ A)A(z € B)}
U:P(X)?—=>P(X) |V:{0,1}* - {0,1} | AUB={ze€X: (x€ A)V(zeB)}
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propositional
set operations operations formula

P(X)—>PX) | 7:{0,1} = {0,1} | A ={zeX: a(zecA)}
N:P(X)2=>PX) | A:{0,1}* 5 {0,1} | AnNB={z€X: (zx€ A)A(xz € B)}
U:P(X)?—=>P(X)|V:{0,1}* > {0,1} | AUB={ze€X: (x€ A)V(zeB)}

By means of membership functions:
pa (@) = ~palz)

pang(z) = pa(z) A pp()
paup(z) = pa(z) Vv pp(z)



—Q
aVp
(aVB)Vy
aA(BVy)
oV o

aV (aAp)
aVl
aV 0

a N\

~(a A pB)

| | | | | | N | N { B

Laws of Boolean algebras

al
(A B) Ay
aV (BA7)
a N\ o
aA(aV )
a0
aANl
aV o

—(aVp)

| || | | (N (N { B
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unary operation —: [0,1] — [0, 1] such that
a<f=-p<a, (N1)
i = o (N2)

Example: Standard negation: o= 1 — a.
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Theorem: Each fuzzy negation — is a continuous, strictly decreasing bijection satisfying
—1=0, -0 = 1. (NO)
lts graph is symmetric w.r.t. the axis of the 1st and 3rd quadrant, i.e., =~ = —
Proof:

e Injectivity: If ~a=—-08,thena=——a=—--38=7.
e Surjectivity: For each o € [0, 1] there is a § € [0, 1] such that @« = = 3, namely 5 = =«

e = continuity and boundary conditions.

e The symmetry of the graph is equivalent to involutivity (N2).
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Representation theorem for fuzzy negations

A function —: [0, 1] — [0, 1] is a fuzzy negation iff there is an increasing bijection

i: [0,1] — [0, 1] (generator of fuzzy negation —) such that

_I:?:O_IO?:_]'

x , e, ma=iT(2i(a)).

S

Proof:

e Sufficiency:
(N1): Assume «, 8 € [0,1], o < B.

i, 1! preserve the ordering, ) reverses it:

vV IA
I =
=3
S .

i(a)
()

_
S
._1( :
0 ;z(a))
-

v
tﬂl
21
=

> p.
(N2): - =to-ai tetonai t=i6eqb00i " =feit=id,

: : S S S S
where id is the identity on [0, 1].
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PAN
=

i(a)
i(a) 21(B)

_
S
._1( :
0 ;z(a))
-

[V

AVARRN V4
_| t'-ﬁl
s
i
=

(NZ): 101 =] o= 0] L = {0007 =707 1 =id,

!

. . S S 3
where id is the identity on [0, 1].
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e Necessity (according to [Nguyen-Walker]|): We shall prove that

a+?ﬁa

2

() =

is a generator of a fuzzy negation —.
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e Necessity (according to [Nguyen-Walker]|): We shall prove that

a+?ﬁa

() = -

is a generator of a fuzzy negation —.
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Possible construction of a generator of a fuzzy negation

e Necessity (according to [Nguyen-Walker]|): We shall prove that

&+?ﬁa

i) = -

is a generator of a fuzzy negation —.

i is increasing, continuous, and satisfies (0) = 0, (1) = 1, thus ¢ is a bijection on [0, 1].

. - = A S i .
—I’jj(af) — 1— = — b
S 2 2 2

S Sl n ?:( a)
—_— —_— —_— =1
2 2 :
B = —Ioi,le,éo?ofl——l

A generator of a fuzzy negation is not unique.
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pa(x) = - pa(z).

We distinguish them by the same indices as the corresponding fuzzy negations, e.g., A” is
the standard complement.



Fuzzy conjunction (triangular norm, t-norm)

binary operation A: [0,1]* — [0, 1] such that, for all o, 3,7~ € [0, 1]:

aAﬁ:ﬁAa
aN(BAY)=(aAB) Ny
B<y=aNhf<aly

alNl =«

(commutativity)
(associativity)
(monotonicity)

(boundary condition)

(@)




P

Z
Fuzzy complement -
19/85

pa(x) = - pa(z).

We distinguish them by the same indices as the corresponding fuzzy negations, e.g., A” is
the standard complement.



(®

Possible construction of a generator of a fuzzy negation

e Necessity (according to [Nguyen-Walker]|): We shall prove that

&+?ﬁa

i) = -

is a generator of a fuzzy negation —.

i is increasing, continuous, and satisfies (0) = 0, (1) = 1, thus ¢ is a bijection on [0, 1].

. - = A S i .
—I’jj(af) — 1— = — b
S 2 2 2

S Sl n ?:( a)
—_— —_— —_— =1
2 2 :
B = —Ioi,le,éo?ofl——l

A generator of a fuzzy negation is not unique.

18/85




Possible construction of a generator of a fuzzy negation

18/85

e Necessity (according to [Nguyen-Walker]|): We shall prove that

a+?ﬁa

() = -

is a generator of a fuzzy negation —.

i is increasing, continuous, and satisfies (0) = 0, (1) = 1, thus ¢ is a bijection on [0, 1].

: 5. 5 S S S .
;a—l——laf ;.—l—.g+—.a
' —1

700 — =J07%]



(e

Possible construction of a generator of a fuzzy negation

18/85

e Necessity (according to [Nguyen-Walker]|): We shall prove that

a+?ﬂa
() = 5

is a generator of a fuzzy negation B )/
— (—;1 ) = 716




(e

Possible construction of a generator of a fuzzy negation

18/85

e Necessity (according to [Nguyen-Walker]|): We shall prove that

a+?ﬂa
() = 5

is a generator of a fuzzy negation B )/
— (—;1 ) = 716




Representation theorem for fuzzy negations

A function —: [0, 1] — [0, 1] is a fuzzy negation iff there is an increasing bijection

i: [0,1] — [0, 1] (generator of fuzzy negation —) such that

—lzfio—lofg:_l

x , e, ma=iT(2i(a)).

S

Proof:

e Sufficiency:
(N1): Assume «, 8 € [0,1], o < B.

i, 1! preserve the ordering, ) reverses it:

PAN
=

i(a)
i(a) 21(B)

_
S
._1( :
0 ;z(a))
-

[V

AVARRN V4
_| t'-ﬁl
s
i
=

(NZ): 101 =] o= 0] L = {0007 =707 1 =id,

!

. . S S 3
where id is the identity on [0, 1].

(e

17/85




Representation theorem for fuzzy negations

A function —: [0, 1] — [0, 1] is a fuzzy negation iff there is an increasing bijection

i: [0,1] — [0, 1] (generator of fuzzy negation —) such that

—lzfio—lofg:_l

x , e, ma=iT(2i(a)).

S

Proof:

e Sufficiency:
(N1): Assume «, 8 € [0,1], o < B.

i, 1! preserve the ordering, ) reverses it:

PAN
=

i(a)
i(a) 21(B)

_
S
._1( :
0 ;z(a))
-

[V

AVARRN V4
_| t'-ﬁl
s
i
=

(NZ): 101 =] o= 0] L = {0007 =707 1 =id,

!

. . S S 3
where id is the identity on [0, 1].

(e

17/85




