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Classical controller design

14/78
We usually put the controller in the feedback loop
Gl 7 -—
S
Gy
_I_
input

G(s) = (I +G2(s) G1(s)) Ga(s) Gy(s)

The stability of the whole loop is influenced by the factor (I-4=G(s) Gl(s))_l

where G1(s) (the controlled system) is given
and Go(s) (the controller) can be chosen almost arbitrarily

Using the above analysis, we can decide the stability of the loop with the proposed controller
(difficult)

The task is easier if we have more information than the output of the controlled system, in
particular if we can measure the states; then a feedback from states allows — in its extreme
(theoretical) form — to achieve arbitrary dynamics of the control loop

Generally, the more information we have the better the control behaviour can be
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Structure of classical controllers -
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Usually the controller uses a linear combination of its inputs (this is Proportional to the
signal), its Integrals, and Derivatives (PID controller)
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In the one-dimensional case, for a constant G1(s) — co the feedback results in

G(s) B 1 1

O TG Gils) g + Gals) | Gals)

and the feedback loop “fully" determines the properties
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1 Stabilizing an inverted pendulum (cartpole prob-

lem)

Using acceleration a, we want to stabilize an inverted pendulum of efficient length
¢. The angle ¢ satisfies the ODE

0o —go+a=0

where g Is the acceleration of gravity, with initial conditions

©(0) = ¢o, ¢'(0) = wo.

In examples, we use g =10, £ =1, ¢og = 0.1, wg = 0.



1.1 No controller a = 0: o'’ —gp =0

The system
P —10p =
»(0) = 0.1
©'(0) =0

Is unstable, the exact solution is: 0.05¢tV10 4 0.05¢—tV10

3e+57T
2.5et5T
2e+t5T
1.5e+57T
le+t5T

Se+4T

Foda




1.2 P controller a = p p: Lo —go4+pp=0

The system is unstable for all p, e.g.
¢ —10p+9p=0
¢(0) = 0.1
#'(0) =0

the exact solution is: 0.05e! 4+ 0.05¢~¢

G257

FAD |

1.25T




@' —10p+20p =0

the exact solution is: 0.1 costv/10

©(0) = 0.1
#'(0) =0

0.057

-0.057T

-0.17

.48




1.3 Pl controller a=pp+i[§p(r)dr

{
590”—990+p99+i/0 p(r)dr =0

Difficult to solve, the order increased.

/

1.4 PD controller a=pp+dyp

Lo —gp+pp+dy =0
It can be stable, e.g.
0" —10p+20p+10¢" =0
¢(0) = 0.1
©'(0) =0



the exact solution is: 0.114 55€t(‘/ﬁ—5) — 1.4550 x 10ﬁ2et("‘/ﬁ—5)

0.0757

AR

0.0257
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@’ —100+100p +10¢p" =0
¢(0) = 0.1
»'(0) =0
the exact solution is: 0.1e % cos tv/65 + 6.2017 X 10— 2e 2t sin t+/65

0.0757

0.057

0.0257

0 \/ 1.25 2.5 3.75




0" —10p+35¢p+10¢ =0
©(0) = 0.1
©'(0) =0
the exact solution is: 0.1e 2% + 0.5te>*

0.0757

0.057

0.0257

0 1.25 25 3 75




1.5 State-feedback controller a=pp+dy +cy”

b —gp+pp+de +cp’ =0

It can be stable and the order decreases for ¢ = —/ (then the second-order term
vanishes), e.g.

0" —10p+20p+ ¢ — " =0
¢(0) = 0.1

the exact solution is: 0.1e 10t

0.0757]

0.057

0.0257

0 1.25 2o £ S 5
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Problems of the classical control

Non-linearity

Boundedness of control variables

Further requirements on control (e.g., zero overshoot) which cannot be easily checked
in the model

Parameters are not precisely known (or it is difficult to measure them)
Sensitivity to changes of parameters and input values

Discretization

Delays in actions (e.g., computation of the control variable)

Non-stationarity (the parameters change)

The model does not describe all important relations (it is drastically simplified)
Problems of solvability of the task

Non-interpretability of the parameters of the controller
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2 Why these strange results?

We have to look at the characteristic values of the systems, these are roots of the
denominator of the transfer function of the feedback loop,

G1(s)

L R ABIAD
where
Gy (s) = —
g — {82
and G(s) is the transfer function of the controller, hence
G(s) = ———

{52 — g+ Gos)
and we study the roots of £ s — g + Go(s)



2.1 No controller G(s) =0: (s —g=0

g = ::\/? (in the real domain)

2.2 P controller G(s) = p: (s°—g+p=0

s = Jg ; = (two-valued square root in the complex domain)



Im

The roots are symmetric w.r.t. 0, so stability cannot be achieved

2.3 Pl controller G(s) =p—+ -

0
(s> —g+p+-=0

S



Difficult to solve (3rd order, even for a drastically simplified task)

2.4 PD controller G(s)=p—+ds

{52 g+p+ds =0

i+ B 4L (g
2 K

S =



Im

Re

N Q.
o

—d

The roots are symmetric w.r.t. CYA so stability can be achieved

2.5 State-feedback controller G(s) =p+ds+ cs?

Esz—g—[—p—b—ds—)—cs2:0



Any form is theoretically possible, e.g., ¢ = —¢, p = 20, d = 1.

s2_-10+204+5—52=0
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[Zadeh 1973] suggested the use of fuzzy logic in control (he already contributed to the
development of the classical control theory)

‘Mamdani, Assilian 1975]: the first fuzzy controller (of a steam engine)

Holmblad 1982]: a fuzzy controller of a cement kiln (high non-linearity, many variables,
manual control used before)

Sugeno 1985]: prototypes of other industrial applications

Yasunubo et al. 1983]: a fuzzy controller of the Sendai Underground (operating since 1987)

A boom of fuzzy controllers in 80's and 90's, mainly in Japan (now mainly washing
machines, vacuum cleaners, camcorders, etc.)

Now it is time to test whether fuzzy control may infiltrate in more difficult and demanding
applications
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Basic ideas and notions of fuzzy control -
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Inputs of a fuzzy controller:
¢ desired output values
¢ actual output values
¢ possibly internal states of the controlled system

¢ event. additional information from the user, usually linguistic

Input variables are coordinates in the input space, X', usually a convex subset of R*

Outputs of a fuzzy controller:
@ control actions (inputs of the controlled system)

® event. additional information for the user

Output variables are coordinates in the output space, ), usually a convex subset of R”




Crisp controller
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A classical controller performs a mapping f: X — )
It can be represented by a crisp subset of X x )/, namely

{(,y) eXx YV ]y=f(z)}

and by a (crisp) membership function R: X x Y — {0, 1}

R(ﬂ?jy)—{ 1 |fy:f($):~

0 otherwise




P
<

Motivation of a fuzzy controller -
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Sometimes a human expert (or other source, e.g., data mining) can give us hints in the form
if input is ... then output is ... and

if c € A, then y € C,
(rule base of if-then rules)

The rules are vague, often with unsharp boundaries of applicability
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Zadeh's suggestion (1973): Express the information from the rule base using fuzzy sets, as a
fuzzy relation R: X x Y — [0, 1]

(a fuzzy subset of X x )V, R € F(X x )))

which generalizes the classical control function

Fuzzy controller
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Zadeh's suggestion (1973): Express the information from the rule base using fuzzy sets, as a
fuzzy relation R: X x Y — [0, 1]
(a fuzzy subset of X x Y, R € F(X x )))

which generalizes the classical control function

Moreover, the internal inference mechanism can work with fuzzy subsets of the
input/output space (instead of points) and map fuzzy subsets of the input space X onto
fuzzy subsets of the output space ),

o: F(X) = F())

The input can be fuzzy, but it is often crisp; sometimes a crisp input is fuzzified

The output can be fuzzy, but usually a crisp value is required; a defuzzification
A: F(Y) — Y takes place as the final step
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Zadeh's suggestion (1973): Express the information from the rule base using fuzzy sets, as a
fuzzy relation R: X x Y — [0, 1]
(a fuzzy subset of X x Y, R € F(X x )))
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The input can be fuzzy, but it is often crisp; sometimes a crisp input is fuzzified

The output can be fuzzy, but usually a crisp value is required; a defuzzification
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For fuzzy inference itself, we need a correspondence between fuzzy subsets of the input and
output spaces




Basic notions of a fuzzy controller
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Rule database:
if X is A; then Y is C'; and

if XisA, thenY is C,
where
X € F(X) is a fuzzy input
Y = ®(X) € F()) is the corresponding fuzzy output
A; € F(X),i=1,...,n, are antecedents (premises) which can be interpreted as

¢ assumptions,
¢ domains of applicability, or

¢ typical fuzzy inputs

C; € F()),1=1,...,n, are consequents (conclusions) expressing the desired outputs




Dimensionality
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Antecedents are subsets of multi-dimensional spaces

They carry information about several variables (and so do the consequents)

Usually they are decomposed to conjunctions (cylindric extensions) of one-dimensional fuzzy
sets

Then the rules attain the form

if Al IS Aﬂ

and ...

and AH 1S A?::UJ
then ' is Cj;

and ...

and C, is C;,
t=1,....,7

If an antecedent has a more complex shape (non-convex), we may cover it approximately by
several rules of the above form
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Simplifying assumptions -
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1. We ignore the conjunctions (cylindric extensions) and admit arbitrary shapes of
antecedents
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Simplifying assumptions -
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. We ignore the conjunctions (cylindric extensions) and admit arbitrary shapes of
antecedents

. We decompose the output to single variables considered independently. Without loss of
generality, we restrict attention to MISO (Mulitple Input Single Output) systems
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Compositional rule of inference
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The rule base is represented by a fuzzy relation R € F(X x ))
The output, Y, is obtained by a composition of R with the input, X:

Y =®(X)=XoR

Y(y) = sup (R(z,y) A X(z))

where A is a t-norm (fuzzy conjunction); different choices are possible, but we shall restrict

to continuous t-norms

The supremum is the standard t-conorm; it should not be replaced by another t-conorm
(because it may have uncountably many arguments)
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How to derive the fuzzy relation R from the rule base b
26/78

The most natural idea: Residuum-based fuzzy controller:

Rges(, y) = min (A;(x) — Ci(y))

1

where — is a fuzzy implication, usually the residuum (R-implication) of A,

a— f=sup{y € [0,1] [y Ao <}
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