Fuzzy conjunction (triangular norm, t-norm)

20/72

binary operation $\wedge:[0,1]^2\to[0,1]$ such that, for all $\alpha,\beta,\gamma\in[0,1]$:

$$\alpha \wedge \beta = \beta \wedge \alpha \qquad \text{(commutativity)} \qquad \text{(T1)}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma \qquad \text{(associativity)} \qquad \text{(T2)}$$

$$\beta \leq \gamma \Rightarrow \alpha \wedge \beta \leq \alpha \wedge \gamma \qquad \text{(monotonicity)} \qquad \text{(T3)}$$

$$\alpha \wedge 1 = \alpha \qquad \text{(boundary condition)} \qquad \text{(T4)}$$

Theorem: $\alpha \wedge 0 = 0$.

Proof: Using (T3) and (T4): $\alpha \wedge 0 \stackrel{\text{(T3)}}{\leq} 1 \wedge 0 \stackrel{\text{(T4)}}{=} 0$.

Examples of fuzzy conjunctions

Standard conjunction (min, Gödel, Zadeh, . . .):

$$\alpha \underset{S}{\wedge} \beta = \min(\alpha, \beta).$$

Łukasiewicz conjunction (Giles, bold, . . .):

$$\alpha \underset{\mathbf{L}}{\wedge} \beta = \begin{cases} \alpha + \beta - 1 & \text{if } \alpha + \beta - 1 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Product conjunction (probabilistic, Goguen, algebraic product, . . .):

$$\alpha \wedge_{P} \beta = \alpha \cdot \beta.$$

Drastic conjunction (weak, . . .):

$$\alpha \underset{\mathrm{D}}{\wedge} \beta = \begin{cases} \alpha & \text{if } \beta = 1, \\ \beta & \text{if } \alpha = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Fuzzy conjunction (triangular norm, t-norm)

20/72

binary operation $\wedge:[0,1]^2\to[0,1]$ such that, for all $\alpha,\beta,\gamma\in[0,1]$:

$$\alpha \wedge \beta = \beta \wedge \alpha \qquad \text{(commutativity)} \qquad \text{(T1)}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma \qquad \text{(associativity)} \qquad \text{(T2)}$$

$$\beta \leq \gamma \Rightarrow \alpha \wedge \beta \leq \alpha \wedge \gamma \qquad \text{(monotonicity)} \qquad \text{(T3)}$$

$$\alpha \wedge 1 = \alpha \qquad \text{(boundary condition)} \qquad \text{(T4)}$$

Theorem: $\alpha \wedge 0 = 0$.

Proof: Using (T3) and (T4): $\alpha \wedge 0 \stackrel{\text{(T3)}}{\leq} 1 \wedge 0 \stackrel{\text{(T4)}}{=} 0$.

Examples of fuzzy conjunctions

Standard conjunction (min, Gödel, Zadeh, . . .):

$$\alpha \underset{S}{\wedge} \beta = \min(\alpha, \beta).$$

Łukasiewicz conjunction (Giles, bold, . . .):

$$\alpha \underset{\mathbf{L}}{\wedge} \beta = \begin{cases} \alpha + \beta - 1 & \text{if } \alpha + \beta - 1 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Product conjunction (probabilistic, Goguen, algebraic product, . . .):

$$\alpha \wedge_{P} \beta = \alpha \cdot \beta.$$

Drastic conjunction (weak, . . .):

$$\alpha \underset{\mathrm{D}}{\wedge} \beta = \begin{cases} \alpha & \text{if } \beta = 1, \\ \beta & \text{if } \alpha = 1, \\ 0 & \text{otherwise.} \end{cases}$$

•

22/72

Basic fuzzy conjunctions

standard

Łukasiewicz

drastic

Examples of fuzzy conjunctions

Standard conjunction (min, Gödel, Zadeh, . . .):

$$\alpha \underset{S}{\wedge} \beta = \min(\alpha, \beta).$$

Łukasiewicz conjunction (Giles, bold, . . .):

$$\alpha \underset{\mathbf{L}}{\wedge} \beta = \begin{cases} \alpha + \beta - 1 & \text{if } \alpha + \beta - 1 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Product conjunction (probabilistic, Goguen, algebraic product, . . .):

$$\alpha \wedge_{P} \beta = \alpha \cdot \beta.$$

Drastic conjunction (weak, . . .):

$$\alpha \underset{\mathrm{D}}{\wedge} \beta = \begin{cases} \alpha & \text{if } \beta = 1, \\ \beta & \text{if } \alpha = 1, \\ 0 & \text{otherwise.} \end{cases}$$

•

22/72

Basic fuzzy conjunctions

standard

Łukasiewicz

drastic

Yager fuzzy conjunctions

$$\alpha \bigwedge_{\mathbf{Y_w}} \beta = \max \left(1 - \left((\alpha - 1)^w + (\beta - 1)^w \right)^{\frac{1}{w}}, 0 \right)$$

m p

24/72

Hamacher fuzzy conjunctions

$$\alpha \underset{\mathbf{H_r}}{\wedge} \beta = \frac{\alpha \beta}{r + (1 - r) (\alpha + \beta - \alpha \beta)}$$

Hamacher fuzzy conjunctions

$$\alpha \wedge \beta = \frac{\alpha \beta}{r + (1 - r)(\alpha + \beta - \alpha \beta)}$$

Theorem:

$$\forall \alpha, \beta \in [0,1]: \ \alpha \underset{\mathbf{D}}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Proof: If $\alpha = 1$ or $\beta = 1$, then (T4) gives the same result for all fuzzy conjunctions. Assume (without loss of generality) that $\alpha \leq \beta < 1$. Then

$$\alpha \underset{\mathcal{D}}{\wedge} \beta = 0 \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} 1 = \alpha = \alpha \underset{\mathcal{S}}{\wedge} \beta.$$

Theorem:

$$\forall \alpha, \beta \in [0,1]: \ \alpha \underset{\mathbf{D}}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Proof: If $\alpha=1$ or $\beta=1$, then (T4) gives the same result for all fuzzy conjunctions. Assume (without loss of generality) that $\alpha \leq \beta < 1$. Then

$$\alpha \underset{\mathbf{D}}{\wedge} \beta = 0 \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} 1 = \alpha = \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Hamacher fuzzy conjunctions

$$\alpha \wedge \beta = \frac{\alpha \beta}{r + (1 - r)(\alpha + \beta - \alpha \beta)}$$

Hamacher fuzzy conjunctions

$$\alpha \wedge \beta = \frac{\alpha \beta}{r + (1 - r)(\alpha + \beta - \alpha \beta)}$$

Yager fuzzy conjunctions

$$\alpha \bigwedge_{\mathbf{Y_w}} \beta = \max \left(1 - \left((\alpha - 1)^w + (\beta - 1)^w \right)^{\frac{1}{w}}, 0 \right)$$

(8)

m p

22/72

Basic fuzzy conjunctions

standard

Łukasiewicz

drastic

(8)

m p

22/72

Basic fuzzy conjunctions

standard

Łukasiewicz

drastic

Yager fuzzy conjunctions

$$\alpha \bigwedge_{\mathbf{Y_w}} \beta = \max \left(1 - \left((\alpha - 1)^w + (\beta - 1)^w \right)^{\frac{1}{w}}, 0 \right)$$

Hamacher fuzzy conjunctions

$$\alpha \wedge \beta = \frac{\alpha \beta}{r + (1 - r)(\alpha + \beta - \alpha \beta)}$$

Hamacher fuzzy conjunctions

$$\alpha \wedge \beta = \frac{\alpha \beta}{r + (1 - r)(\alpha + \beta - \alpha \beta)}$$

Theorem:

$$\forall \alpha, \beta \in [0,1]: \ \alpha \underset{\mathbf{D}}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Proof: If $\alpha=1$ or $\beta=1$, then (T4) gives the same result for all fuzzy conjunctions. Assume (without loss of generality) that $\alpha \leq \beta < 1$. Then

$$\alpha \underset{\mathbf{D}}{\wedge} \beta = 0 \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} 1 = \alpha = \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Theorem:

$$\forall \alpha, \beta \in [0,1]: \ \alpha \underset{\mathbf{D}}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Proof: If $\alpha=1$ or $\beta=1$, then (T4) gives the same result for all fuzzy conjunctions. Assume (without loss of generality) that $\alpha \leq \beta < 1$. Then

$$\alpha \underset{\mathbf{D}}{\wedge} \beta = 0 \leq \alpha \underset{\cdot}{\wedge} \beta \leq \alpha \underset{\cdot}{\wedge} 1 = \alpha = \alpha \underset{\mathbf{S}}{\wedge} \beta.$$

Theorem: Standard conjunction is the only one which is **idempotent**, i.e.,

$$\forall \alpha \in [0,1] : \alpha \wedge \alpha = \alpha$$

Proof: Assume $\alpha, \beta \in [0, 1]$, $\alpha \leq \beta$.

$$\alpha = \alpha \wedge \alpha \stackrel{(T3)}{\leq} \alpha \wedge \beta \stackrel{(T3)}{\leq} \alpha \wedge 1 \stackrel{(T4)}{=} \alpha,$$

thus $\alpha \wedge \beta = \alpha = \alpha \wedge_{S} \beta$.

Analogously for $\alpha > \beta$.

26/72

Theorem: Standard conjunction is the only one which is idempotent, i.e.,

$$\forall \alpha \in [0,1]: \alpha \wedge \alpha = \alpha$$

Proof: Assume $\alpha, \beta \in [0, 1]$, $\alpha \leq \beta$.

$$\alpha = \alpha \wedge \alpha \stackrel{\text{(T3)}}{\leq} \alpha \wedge \beta \stackrel{\text{(T3)}}{\leq} \alpha \wedge 1 \stackrel{\text{(T4)}}{=} \alpha,$$

thus $\alpha \wedge \beta = \alpha = \alpha \wedge \beta$.

Analogously for $\alpha > \beta$.

m p

Representation of fuzzy conjunctions (in general)

27/72

Theorem: Let \bigwedge_1 be a fuzzy conjunction and $i:[0,1]\to [0,1]$ be an increasing bijection. Then the operation $\bigwedge_2:[0,1]^2\to [0,1]$ defined by

$$\alpha \wedge \beta = i^{-1} (i(\alpha) \wedge i(\beta))$$

is a fuzzy conjunction. If \bigwedge_1 is continuous, so is \bigwedge_2 .

Proof:

Commutativity (analogously for associativity):

$$\alpha \wedge_{2} \beta = i^{-1}(i(\alpha) \wedge_{1} i(\beta)) = i^{-1}(i(\beta) \wedge_{1} i(\alpha)) = \beta \wedge_{2} \alpha$$

• monotonicity: Assume $\beta \leq \gamma$.

$$i(\beta) \leq i(\gamma),$$

$$i(\alpha) \underset{1}{\wedge} i(\beta) \leq i(\alpha) \underset{1}{\wedge} i(\gamma),$$

$$\alpha \underset{2}{\wedge} \beta = i^{-1}(i(\alpha) \underset{1}{\wedge} i(\beta)) \leq i^{-1}(i(\alpha) \underset{1}{\wedge} i(\gamma)) = \alpha \underset{2}{\wedge} \gamma.$$

Representation of fuzzy conjunctions (in general)

Theorem: Let \bigwedge_1 be a fuzzy conjunction and $i:[0,1]\to [0,1]$ be an increasing bijection. Then the operation $\bigwedge_2:[0,1]^2\to [0,1]$ defined by

$$\alpha \wedge_{2} \beta = i^{-1} (i(\alpha) \wedge_{1} i(\beta))$$

is a fuzzy conjunction. If \bigwedge_1 is continuous, so is \bigwedge_2 .

Proof:

Commutativity (analogously for associativity):

$$\alpha \wedge_{2} \beta = i^{-1}(i(\alpha) \wedge_{1} i(\beta)) = i^{-1}(i(\beta) \wedge_{1} i(\alpha)) = \beta \wedge_{2} \alpha$$

• monotonicity: Assume $\beta \leq \gamma$.

$$\begin{split} i(\beta) & \leq & i(\gamma), \\ i(\alpha) & \underset{1}{\wedge} i(\beta) & \leq & i(\alpha) \underset{1}{\wedge} i(\gamma), \\ \\ \alpha & \underset{2}{\wedge} \beta = i^{-1}(i(\alpha) \underset{1}{\wedge} i(\beta)) & \leq & i^{-1}(i(\alpha) \underset{1}{\wedge} i(\gamma)) = \alpha \underset{2}{\wedge} \gamma. \end{split}$$

Boundary condition:

$$\alpha \wedge 1 = i^{-1}(i(\alpha) \wedge i(1)) = i^{-1}(i(\alpha) \wedge 1) = i^{-1}(i(\alpha)) = \alpha.$$

Classification of fuzzy conjunctions

29/72

Continuous fuzzy conjunction ∧ is

Archimedean if

$$\forall \alpha \in (0,1): \ \alpha \wedge \alpha < \alpha \tag{TA}$$

• strict if

$$\forall \alpha \in (0,1] \ \forall \beta, \gamma \in [0,1]: \ \beta < \gamma \Rightarrow \alpha \land \beta < \alpha \land \gamma$$
 (T3+)

nilpotent if it is Archimedean and not strict.

Example: Product conjunction is strict, Łukasiewicz conjunction is nilpotent, standard and drastic conjunctions are not Archimedean (the standard one violates (TA), the drastic one is not continuous).

Boundary condition:

$$\alpha \wedge 1 = i^{-1}(i(\alpha) \wedge i(1)) = i^{-1}(i(\alpha) \wedge 1) = i^{-1}(i(\alpha)) = \alpha.$$

Representation of fuzzy conjunctions (in general)

Theorem: Let \bigwedge_1 be a fuzzy conjunction and $i:[0,1]\to [0,1]$ be an increasing bijection. Then the operation $\bigwedge_2:[0,1]^2\to [0,1]$ defined by

$$\alpha \wedge_{2} \beta = i^{-1} (i(\alpha) \wedge_{1} i(\beta))$$

is a fuzzy conjunction. If \bigwedge_1 is continuous, so is \bigwedge_2 .

Proof:

Commutativity (analogously for associativity):

$$\alpha \wedge_{2} \beta = i^{-1}(i(\alpha) \wedge_{1} i(\beta)) = i^{-1}(i(\beta) \wedge_{1} i(\alpha)) = \beta \wedge_{2} \alpha$$

• monotonicity: Assume $\beta \leq \gamma$.

$$\begin{split} i(\beta) & \leq & i(\gamma), \\ i(\alpha) & \underset{1}{\wedge} i(\beta) & \leq & i(\alpha) \underset{1}{\wedge} i(\gamma), \\ \\ \alpha & \underset{2}{\wedge} \beta = i^{-1}(i(\alpha) \underset{1}{\wedge} i(\beta)) & \leq & i^{-1}(i(\alpha) \underset{1}{\wedge} i(\gamma)) = \alpha \underset{2}{\wedge} \gamma. \end{split}$$

Representation of fuzzy conjunctions (in general)

Theorem: Let \bigwedge_1 be a fuzzy conjunction and $i:[0,1]\to [0,1]$ be an increasing bijection. Then the operation $\bigwedge_2:[0,1]^2\to [0,1]$ defined by

$$\alpha \wedge_{2} \beta = i^{-1} (i(\alpha) \wedge_{1} i(\beta))$$

is a fuzzy conjunction. If \bigwedge_1 is continuous, so is \bigwedge_2 .

Proof:

Commutativity (analogously for associativity):

$$\alpha \wedge_{2} \beta = i^{-1}(i(\alpha) \wedge_{1} i(\beta)) = i^{-1}(i(\beta) \wedge_{1} i(\alpha)) = \beta \wedge_{2} \alpha$$

• monotonicity: Assume $\beta \leq \gamma$.

$$\begin{split} i(\beta) & \leq & i(\gamma), \\ i(\alpha) & \underset{1}{\wedge} i(\beta) & \leq & i(\alpha) \underset{1}{\wedge} i(\gamma), \\ \\ \alpha & \underset{2}{\wedge} \beta = i^{-1}(i(\alpha) \underset{1}{\wedge} i(\beta)) & \leq & i^{-1}(i(\alpha) \underset{1}{\wedge} i(\gamma)) = \alpha \underset{2}{\wedge} \gamma. \end{split}$$

Boundary condition:

$$\alpha \wedge 1 = i^{-1}(i(\alpha) \wedge i(1)) = i^{-1}(i(\alpha) \wedge 1) = i^{-1}(i(\alpha)) = \alpha.$$

Classification of fuzzy conjunctions

29/72

Continuous fuzzy conjunction ∧ is

Archimedean if

$$\forall \alpha \in (0,1): \ \alpha \wedge \alpha < \alpha \tag{TA}$$

• strict if

$$\forall \alpha \in (0,1] \ \forall \beta, \gamma \in [0,1]: \ \beta < \gamma \Rightarrow \alpha \land \beta < \alpha \land \gamma$$
 (T3+)

nilpotent if it is Archimedean and not strict.

Example: Product conjunction is strict, Łukasiewicz conjunction is nilpotent, standard and drastic conjunctions are not Archimedean (the standard one violates (TA), the drastic one is not continuous).

Classification of fuzzy conjunctions

29/72

Continuous fuzzy conjunction \wedge is

Archimedean if

$$\forall \alpha \in (0,1) : \alpha \wedge \alpha < \alpha \tag{TA}$$

strict if

$$\forall \alpha \in \boxed{(0,1]} \ \forall \beta, \gamma \in [0,1]: \ \beta < \gamma \Rightarrow \alpha \land \beta < \alpha \land \gamma$$
 (T3+)

nilpotent if it is Archimedean and not strict.

Example: Product conjunction is strict, Łukasiewicz conjunction is nilpotent, standard and drastic conjunctions are not Archimedean (the standard one violates (TA), the drastic one is not continuous).

Representation theorem for strict fuzzy conjunctions

30/72

Operation $\wedge: [0,1]^2 \to [0,1]$ is a strict fuzzy conjunction iff there is an increasing bijection $i: [0,1] \to [0,1]$ (multiplicative generator) such that

$$\alpha \wedge \beta = i^{-1} (i(\alpha) \wedge i(\beta)) = i^{-1} (i(\alpha) \cdot i(\beta)).$$

Sufficiency has been already proved (except for strictness which is easy). The proof of necessity is much more advanced.

A multiplicative generator of a strict fuzzy conjunction is not unique.

Classification of fuzzy conjunctions

29/72

Continuous fuzzy conjunction \wedge is

Archimedean if

$$\forall \alpha \in (0,1) : \alpha \wedge \alpha < \alpha \tag{TA}$$

strict if

$$\forall \alpha \in \boxed{(0,1]} \ \forall \beta, \gamma \in [0,1]: \ \beta < \gamma \Rightarrow \alpha \land \beta < \alpha \land \gamma$$
 (T3+)

nilpotent if it is Archimedean and not strict.

Example: Product conjunction is strict, Łukasiewicz conjunction is nilpotent, standard and drastic conjunctions are not Archimedean (the standard one violates (TA), the drastic one is not continuous).

Classification of fuzzy conjunctions

29/72

Continuous fuzzy conjunction \wedge is

Archimedean if

$$\forall \alpha \in (0,1) : \alpha \wedge \alpha < \alpha \tag{TA}$$

strict if

$$\forall \alpha \in \boxed{(0,1]} \ \forall \beta, \gamma \in [0,1]: \ \beta < \gamma \Rightarrow \alpha \land \beta < \alpha \land \gamma$$
 (T3+)

nilpotent if it is Archimedean and not strict.

Example: Product conjunction is strict, Łukasiewicz conjunction is nilpotent, standard and drastic conjunctions are not Archimedean (the standard one violates (TA), the drastic one is not continuous).

Representation theorem for strict fuzzy conjunctions

30/72

Operation $\wedge: [0,1]^2 \to [0,1]$ is a strict fuzzy conjunction iff there is an increasing bijection $i: [0,1] \to [0,1]$ (multiplicative generator) such that

$$\alpha \wedge \beta = i^{-1} (i(\alpha) \wedge i(\beta)) = i^{-1} (i(\alpha) \cdot i(\beta)).$$

Sufficiency has been already proved (except for strictness which is easy). The proof of necessity is much more advanced.

A multiplicative generator of a strict fuzzy conjunction is not unique.